

"Examination of the VVER fuel behavior under the severe accident conditions. Quench stage"

ISTC 1648.2 Project Progress Report

Presented by A.Goryachev

11th CEG-SAM Meeting Dresden, March 6-9, 2007

Project structure

- **STAGE A.** Spent ROD-QUENCH: Study of the spent fuel rod segments behavior under reflood conditions.
- **STAGE B.** Fresh FA-QUENCH: Integral experiment of QUENCH type using model bundle with 31 fuel rod simulators under QUENCH conditions.
- **STAGE C**. FA Quench Model: Development of models and codes to describe VVER core behavior under severe accident conditions ("quench" stage) on the base of results of stages A and B

Stage A : Study of the irradiated fuel rod segments behavior under reflood conditions

- Pre-oxidized cladding failure behaviour
- Hydrogen generation
- Fission products release

Objective:

Extension of the experimental database for the irradiated fuel behaviour during reflooding

Stage A

- Test rig designing and manufacturing
- Working out the experimental technique
- Tests with unirradiated fuel rod simulators
- 18 tests with the irradiated fuel rod simulators at quench temperatures of 1400, 1600 and 1700 °C.

Tests with unirradiated simulators

Objectives:

- Checking the test rig
- Test regimes determining
- Revealing the possible simulators post-test state and sources of additional H₂ generation at quench
- Obtaining the data base for comparison with the irradiated simulators and previous results (FZKA)

Results

Two series of tests with unirradiated simulators at temperatures of 1400 and 1700 °C are done.

Tested simulators appearance

Test regime and H2 generation rate

Unirradiated simulator (in-hot-cell test, steam oxidation)

Simulator 35

Time, s

Structure of oxide films formed during oxidation in Ar-O₂ mixture and steam

Simulator 24 (Ar-O)

Simulator 35 (steam)

Results of unirradiated simulator tests at quench temperature of 1400 °C

Simulator	Pre- oxidation	Simulator weight gain, mg	Oxide film thickness, µm	H ₂ generation at quench, mg
21	Ar - O	353	41	7.2 ± 0.6
22	Ar - O	596	65	3.5 ± 0.3
23	Ar - O	912	99	3.4 ± 0.3
24	Ar - O	973	105	2.7 ± 0.2
35	Steam	-	99	3.2 ± 0.3

Время, с

Results of unirradiated simulator tests at quench temperature of 1700°C

Simulator	25	26	27	28	31	32	
Preliminary oxidation time at 1400 °C, s	240	240	240	240	0	600	
Quench environment	H ₂ 0	H ₂ 0	steam	steam	H ₂ 0	H ₂ 0	
Pellets	UO ₂	UO ₂	-	-	UO ₂	UO ₂	
Quench temperature, °C	1717	1722	1704	1703	1770	1755	
Post-test simulator state	Failed	Intact	Intact	Intact	Failed	Failed	
Oxide film thickness, µm	270	140	120	150	150	270	
Total H ₂ generation, mg	238 ± 19	187 ± 15	140 ± 11	166 ± 14	153 ± 12	226 ± 18	
H ₂ generation at quench,mg	14.1 ± 1.1	8.6 ± 0.7	11.6 ± 0.9	6.6 ± 0.5	27.4 ± 2.2	17.5 ± 1.4	

Irradiated Simulators Test

Simulators 36, 39:

- Irradiated simulators, refabricated from VVER fuel rod with burnup of 54 MW·d/kg U and 65 MW·d/kg U;
- Quench tests at 1400 °C in the regime similar to simulator 35 (comparison of the unirradiated and irradiated simulator tests).

Simulator 37:

- Irradiated simulator, refabricated from VVER fuel rod with burnup of 54 MW·d/kg U ;
- Quench tests at 1700 °C without preliminary oxidation (maximal hydrogen peak at quench is expected).

Simulator 40

- Irradiated simulator, refabricated from VVER fuel rod with burnup of 65 MW·d/kg U ;
- Quench tests at 1400 °C without preliminary oxidation

Simulator 39

Simulator 37

Simulator 40

54 MW·d/kg U; Quench test at 1700 °C (no preliminary oxidation)

54 MW·d/kg U; Quench test at 1400 °C (preliminary oxidation 240 s at 1400 °C)

65 MW·d/kg U; Quench test at 1400 °C (preliminary oxidation 240 s at 1400 °C)

65 MW·d/kg U; Quench test at 1400 °C (no preliminary xidation)

Simulator 40.

Test regime and hydrogen generation rate

Время, с

Oxide film thickness and cladding structure of the irradiated simulators

Simulator 36

Simulator 37

Simulator 40

100 um

Simulator 39

Results of irradiated simulator tests

Simulator	36	37	39	40	
Burnap, MWt·d/kg U	54	54	65	65	
Preliminary oxidation time at 1400 °C, s	240	0	240	0	
Quench temperature, °C	1407	1703	1428	1411	
Oxide film thickness, µm	111	15	98	9	
Outer αZr(O), μm	186	55	158	21	
Inner αZr(O), μm	170	261	182	120	
Total H ₂ generation, mg	164 ± 13	16.3 ± 1.3	173 ± 14	13.6 ± 1.1	
H ₂ generation at quench, mg	6.7 ± 0.5	14.7 ± 1.2	7.0 ± 0.6	13.6 ± 1.1	
Total ⁸⁵ Kr release, ml	0.037±0.004	0.065±0.008	0.033±0.004	0.016±0.002	
Total Xe, release ml	12.9 ± 1.3	34 ± 3.4	$\textbf{9.9} \pm \textbf{1.0}$	$\textbf{4.9}\pm\textbf{0.5}$	
Relative ⁸⁵ Kr release, %	18.2	33.1	9.2	4.5	
Relative Xe release, %	15.9	42.2	10.2	5.0	
⁸⁵ Kr, release at quench, %	4.4	21.3	11.2	29.9	
Xe, release at quench, %	2.9	17.6	10.5	32.6	
Total 137 Cs release, %	4.3	11.3	8.9	2.6	
137 Cs release at quench, %	0.7	1.3	1.2	0.6	

Test rig furnace

Simulator 42

Time, s

Elevation 700 mm

ROD D: 700 mm

ROD F: 700 mm

ROD B: 700 mm

Elevation 820 mm

Time, s

ROD B: 820 mm

Elevation 940 mm

ROD D: 940 mm

ROD F: 940 mm

Elevation 1120 mm

ROD F: 1120 mm

1648.2 Project Time Schedule

	1 st y	vear	2 nd 2	year	3 rd year			
STAGE A. Spent ROD- QUENCH								
STAGE B. FA-QUENCH								
STAGE C. FA-QUENCH Model								

ROD-QUENCH Time Schedule

Stage	Participating Institution	1 st year			2 nd year			3 rd year					
		1	2	3	4	1	2	3	4	1	2	3	4
Development of the test program	RIAR IBRAE												
Manufacturing of test rig	RIAR												
Tests execution	RIAR												
Post-test examinations	RIAR												
Analysis of test results Models development	IBRAE												

Current 1648.2 Project state

STAGE A. Spent ROD-QUENCH

- •The tests with unirradiated VVER fuel rod simulators are performed under the reflooding conditions
- 5 of 18 planned tests with irradiated simulators are done

•Test rig is restored, but additional time (about two quarters) is needed to accomplish the planned tests.

STAGE B. Fresh FA-QUENCH

Work may be accomplished within the time schedule

STAGE C. FA Quench Model