

A.P. Alexandrov Research Institute of Technology (Russia)

Progress Report on the ISTC project #3592 "Investigation of Corium Melt Interaction with NPP Reactor Vessel Steel" (METCOR-P)

Presented by S. Bechta 17th CEG-SAM meeting Madrid, Spain March 29-31, 2010

Contents

- Essential information
- Objectives of METCOR-P project
- Experimental matrix for METCOR-P project
- Interaction of molten corium with European vessel steel in oxidizing atmosphere:

Test MCP-4

- Response to M. Veshchunov comments on the METCOR model of steel corrosion caused by the interaction with oxidized corium
- Interaction of suboxidized molten corium with European vessel steel: Test MCP-5
- Comments on the M. Veshchunov model of steel corrosion caused by the interaction with suboxidized corium
- > Planning
- Publications

METCOR-P project general information

Investigation of Corium Melt Interaction with NPP Reactor Vessel Steel (#3592 METCOR-P)

Project participants and coordination

Objectives of METCOR-P project

Qualification and quantification of physicochemical phenomena of corium melt interaction with reactor vessel steel with particular interest to:

- Interaction characteristics at the vertically positioned interface
- Peculiarities of interaction with European vessel steel
- Corium melt oxidation transients

Experimental matrix for METCOR-P project

		Experiment	al conditions			
#	ltem	Composition	Surface temperature, °C	Atmo- sphere	Notes	
	Interaction at vertically positioned interface	UO ₂ -ZrO ₂ C100			Reference-test *	
1		UO_2 -Zr O_2 -Zr C30	1400 (Steel)	Ar	MCP1: MC6 conditions	
		Fe-U-Zr-Cr-Ni-O			Metallic phase of the melt enriched with U and Zr	
	Interaction at molten corium oxidation transients	$UO_2 - ZrO_2 - Zr$ C30 with vessel steel specimen			10-hour exposure in Ar until the interaction stabilizes. Replacement of Ar with steam after it	
2		UO ₂ -ZrO ₂ -Zr C30 without vessel steel specimen	2500	Ar steam	The oxidic melt is in contact with a calorimeter	
		Fe-U-Zr-Cr-Ni-O without vessel steel specimen	(Melt)		Molten metal enriched with U and Zr is in contact with a calorimeter	
3	Interaction of molten	UO ₂ -ZrO ₂ -Zr C30	1400 (Steel)	Ar	20 MnMoNi5-5 steel – was provided by	
	corium with european vessel steel	UO _{2+x} -ZrO ₂ UO _{2+x} -ZrO ₂ -FeO _y **	1300 (Steel)	Air**	collaborators	

- *) In accordance with the 1st project meeting decision it is replaced by MCP-2 test with UO_{2+x}- ZrO₂ corium in air and horizontal position of interface
- **) In accordance with a decision taken at the 3^{rd} project meeting, the test was performed in air (instead of steam) and regimes with UO_{2+x} ZrO₂ FeO_y melt were added

Interaction of molten corium with European vessel steel in oxidizing atmosphere (air) TEST MCP-4

Objectives

Comparison of corrosion rates for the European and Russian vessel steels in the oxidizing atmosphere

RASPLAV-3 Installation

Furnace schematics

- 1 –pyrometer shaft; 2 –cover; 3 –electromagnetic screen; 4 quartz tube; 5 crucible section;
- 6 inductor; 7 –melt; 8 acoustic defect; 9 molten ZrO₂; 10 –ZrO₂ powder thermal insulation;
- 11 vessel steel specimen; 12 –upper calorimeter of the specimen;
- 13 lower calorimeter of the specimen; 14 kaolin wool insulation; 15 –ultrasonic sensor;
- 16 -thermocouples; 17 crust, 18 electromagnetic screen; 19 uncooled electromagnetic screen;
- 20 cylindrical support of the specimen

Air supply and evacuation diagram

1 - silica gel dehumidifier; 2 - furnace; 3 – cyclone; 4 – large area filters (LAF);
5 - vacuum pump; P1-P3 – pressure transducers; G1,2 – flow transducers;
T1-T3 – thermocouples; Ox- electrochemical oxygen sensor

Vessel Steel Specimen

Blank

Location of K-type thermocouples in the specimen

Thermocouple №	ТС 01	TC 02	ТС 03	ТС 04	TC 05	TC 06	TC 07	TC 08	ТС 09	TC 10	TC 11	TC 12	TC 13
Angle, α, degrees	180	315	135	45	270	90	225	180	90	45	315	225	45
Distance between the specimen axis and TC hot junction, mm	10.0	10.0	10.0	10.0	10.0	10.0	10.0	29.0	29.0	29.0	29.0	29.0	7.5
Distance between the specimen top and TC hot junction, mm	1	1	3	4	6	2	20	1	2	4	8	20	104

Experimental procedure

Time, s	Description
0 - 280	Startup heatihg
280 - 3470	Molten pool UO _{2+x} -ZrO ₂ is formed. Sample No.1 taken
3470 - 9000	The first temperature plateau. T _{surf} ≈1000°C
9000 - 11200	Transition to the 2 nd temperature plateau
11200 - 13800	The 2 nd temperature plateau. T _{surf} ≈1100°C
13800 - 14400	Transition to the 3 rd temperature plateau. Sample No.2 taken
14400 - 15000	The 3 rd temperature plateau. T _{surf} ≈1200°C
15000 - 23000	Specimen temperature reduced. Fe added into the melt. Molten pool is exposed for added Fe oxidation and UO _{2+x} -ZrO ₂ -FeO _y melt formation. Sample No.3 taken. Transition to the 4 th temperature plateau
23000 - 26400	The 4 th temperature plateau. T _{surf} ≈900°C
26400 - 27100	Correcting amounts of UO ₂ and ZrO ₂ introduced. Sample No.4 taken. Transition to the 5 th temperature plateau
27100 - 30000	The 5 th temperature plateau. T _{surf} ≈1100°C
30000 - 30400	Transition to the 6 th temperature plateau
30400 - 30900	The 6 th temperature plateau. T _{surf} ≈1200°C
30900	Sample No.6 taken
31690	Inductor switched off

Specimen temperature versus time

> 1, 2, 3 – UO_{2+x}- ZrO₂ 4, 5, 6 - UO_{2+x}- ZrO₂- FeO_y

Corrosion depth measurements

— US measurement

- Post test measurement of specimen section
- The maximum corrosion depth was ~ 6 mm

▶ 4, 5, 6 – UO_{2+x} - ZrO₂ - FeO_y

Processed experimental data

Temperature profile and field in the specimen upper part (Reg. 4)

Resulting data used in comparison

Reg. #	Tempe rature of steel surface, T _s , °C	Heat flux, q, MW/m ²	Corro sion rate, W×10 ⁶ , m/s	
1	1005	0.77	0.056	
2	1130	0.86	0.3	
3	1200	0.91	0.81	
4	920	0.71	0.028	
5	1080	0.82	0.32	
6	1150	1.0	3.0	

Comparison of corrosion rates for the European and Russian vessel steels

- Difference in values for
 European and Russian steels
 is insignificant (in logarithmic coordinates)
- The data inventory for
 European steel is too limited
 to construct generalizing
 correlations

Specific features of corrosion at the final stage of experiment

- Temperature on the interaction interface is the highest, it is close to the temperature of regime 6
- > Corrosion rate is much smaller than in regime 6, it is close to regime 5
- > Why?

Dynamics of oxygen concentration in the gas out and changes of melt oxygen potential versus time

- "Gas data" are measured with a delay due to the gas line transport and inertia of the gas bulk in the furnace volume
- Drop in the oxygen potential of the melt when heated steel has a high oxidation rate
- Lower corrosion rate at the final stage of experiment is explained by the insufficient air supply to the melt and by its decreased oxygen potential

Ox₁ - concentration of oxygen in Ox₂ - concentration of oxygen out • - Fe³⁺/ (Fe²⁺+Fe³⁺) $\Delta \Delta$ - U⁶⁺/ (U⁴⁺+U⁶⁺) • Δ - samples • Δ - ingot

Comparison of parameters influencing the oxygen balance in the VVER molten pool, METCOR tests

VVER-1000

METCOR-P tests

Parameter		VVER-1000	METCOR-P tests		
M _{corium} /S _{corrosion}	ka/m²	12 400	460490		
M _{corium} /S _{up}	Kg/m²	15 600	494		
S _{corrosion} /S _{up}	1	1.26	1.011.06		

- ✓ The melt mass vs. corrosion area and the area of molten pool surface, through which the melt is oxidized, do not comply with the requirements for prototypic experimental conditions
- ✓ Oxygen potential of the melt on the vessel bottom is less sensitive to the vessel wall corrosion than in the tests

Conclusions

- The data on European steel are too limited both for a decision about the applicability of correlations developed for VVER steel for describing EU steel corrosion, and for developing correlations specific for this steel
- In the final regime of MCP-3 the vessel steel corrosion rate was so high that the oxygen supply into the pool from air was insufficient for maintaining the steady oxygen potential in the melt. A decrease in the melt oxygen potential caused a slowdown of corrosion rate. It is necessary to check the influence of this effect at other regimes
- In order to determine the corrosion rate at a fixed oxygen potential of the melt we can recommend a higher flow rate of oxidant through the furnace, an increase in the melt mass and a smaller diameter of the steel specimen (crucible diameter being the same)

Response to M. Veshchunov comments on the METCOR model of corium melt – steel interaction in the oxidizing atmosphere (16-th CEG-SAM Meeting)

METCOR Model

- Main diffusion resistance for Fe²⁺ ions corium crust on steel surface
- > Crust thickness δ_{Σ} is determined by the heat conductivity equation; it does not change in time (at steady temperature on the corrosion front)

$$\delta_{\Sigma} = \frac{\lambda (T_{\rm S} - T_{\rm sol})}{q}$$

Corrosion rate is evaluated by Tamman equation:

$$W = A \exp\left(-\frac{E_a}{RT}\right) \frac{1}{\delta_{\Sigma}}$$

METCOR Results

Comments of M. Veshchunov

Coefficient of Fe diffusion in ZrO₂ at T=800°C

D≈10⁻²³ m²/s << D_{METCOR}

Proposed alternative model

Response

- ➢ Corium crust composition
 For UO_{2+x}-ZrO₂-FeO_y melt
 UO_{2+x}~46, ZrO₂~40, FeO_y~14, mass.%
 For UO_{2+x}-ZrO₂ melt
 UO_{2+x}~72, ZrO₂~ 28, mass.%
- ZrO₂ is not the main component in the corium composition.
 Consequently it does not determine the diffusion
 coefficient in the METCOR crust

Response (2)

Coefficient of Fe²⁺ diffusion in FeO

Response (3)

- The flat steel surface in METCOR does not produce a compressing impact on the FeO layer (differently from a cylindrical fuel rod)
- There are no reasons for stochastic (in time and space) generation of cracks in the crust (flowering)
- Even if the generation of cracks takes place, they are healed during the corium melt ingress by low local temperatures [see the dissertation of Yu. Petrov]
- In accordance with the Veschunov model a transition from "low" to "high" temperatures should <u>always</u> result in the qualitative changes of corrosion process. But this is not observed in case of UO_{2+x}-ZrO₂ corium

Conclusion: No reasons for rejecting the METCOR model

Interaction of suboxidized molten corium with European vessel steel

TEST MCP-5

Objectives

Comparison of the corrosion rate and depth for European and Russian vessel steel at its interaction with suboxidized molten corium

Argon supply and gas-aerosol system

1 – Ar tank; 2 – silica gel dehumidifier; 3 – flow-rate transducer; 4 – cyclone; 5 – LAF filter; 6 – AFA filter;
7 – electrochemical oxygen detector; 8 – hydro lock;
9,10 – vacuum pump

Experimental procedure

Time, s	Description				
0 - 1870	Startup heating in the argon atmosphere. Molten pool formation. First melt sample is taken. T _{melt} ≈2400°C; T _s ≈ 1300°C				
1870 - 2610	U _{ind} adjustment; the screen is shifted to get T _s ≈1400°C. T _{melt} ≈2400°C				
2610-44920	Specimen temperature stabilization regime. Investigation of vessel steel corrosion kinetics at its interaction with corium through the crust in argon atmosphere. Large-area filter LAF-1 is replaced				
13000	Automatic disconnection of HF heating, which was immediately reestablished				
13050 – 44920	The temperature stabilization regime is in progress, it is monitored by the indications of operating thermocouples. Large-area filters LAF-2,3 are replaced. The second melt specimen is taken.				
44920 - 45200	The generator is disconnected, the melt is cooled and frozen in the argon atmosphere				

Specimen temperature versus time

- ✓ Thermocouple readings in the plot are cut at times of TC breaks down due its corrosion caused by the impact of U-Zr-Fe melt
- ✓ As the heated top-level TCs break down, the stationary regime is controlled using the indications from of lower and cooler thermocouples

Corrosion depth dynamics

- ✓ Long incubation period approximately 20 000 s
- Corrosion decreases as its front progresses into the specimen bulk a lower-temperature region
- ✓ Difference in final depths determined by the US monitoring and by direct measurement in the axial section of the specimen

Photograph of the specimen axial section

- ✓ The section plane and the ultrasonic defect axis are perpendicular
- \checkmark A initial position of the specimen surface
- ✓ Non-even boundary of the interaction zone
- ✓ 2 different structural components of the IZ, distinguished at the macrolevel

Specimen temperature conditions

- Calculated by the ANSYS code using the measured boundary conditions and temperatures in certain points
- A initial position of the specimen surface, B final boundary of the interaction zone
- ✓ It follows from the figure that the final interaction zone boundary is in the 1150- 1250 °C temperature region

First conclusions

- Corrosion kinetics in MCP-5 and MC6 tests are qualitatively similar and have incubation phase, transient to fast corrosion and saturation phase
- In comparison with MC6 the MCP-5 incubation period increased from 16000 s to 20000 s
- Differently from MC6 the final boundary of interaction zone is irregular (not smooth)
- The final position of the interaction zone boundary was found in the temperature range of 1150-1250 °C (For comparison: MC6 – 1120...1200°C, MCP-5 – 1060...1250 °C)
- Posttest analysis is in progress

Comments to M. Veshchunov model of suboxidized corium melt – steel Interaction (16-th CEG-SAM Meeting)

Oxygen diffusion through mushy crust (UO₂+ZrO₂+Zr melt)

Comments

Test MC6, corium C-30, (U, Zr)ат≈1.2

SQ3

SQ4

EDX data

#	U	Zr	Fe	Cr	Ni	0	
SQ3 (1×1 mm)	mass.%	24.02	5.15	66.71	2.02	0.83	1.27
SQ4 (1×1 mm)	mass.%	23.56	4.79	67.08	2.21	0.8	1.56
P1	mass.%	-	-	95.94	3.7	-	0.36
P2	mass.%	22.57	22.09	51.79	0.64	1.06	1.85
P3	mass.%	59.89	2.31	34.07	-	0.94	2.79
Eut2	mass.%	35.63	2.55	57.54	1.41	1.1	1.77
Eut3	mass.%	38.53	1.04	56.5	1.24	1.21	1.48
Eut4	mass.%	37.94	1.29	56.77	1.24	1.11	1.65

- In the Veschunov model the distribution of components does not reflect the real picture
- Corrosion of steel at its interaction with suboxidized corium melt is caused not by its oxidation, but by eutectic melting (dissolution) of steel
- Redistribution (repartitioning) of components, including oxygen, between the melt and interaction zone is similar to the components' repartitioning between oxidic and metallic melts (MASCA) with certain peculiarities explained by thermal gradient conditions

Proc. of ICAPP'04, Paper 6054 Proc. of ICAPP'06, Paper 4114

Planning

- According to the Experimental Matrix of the Project, 3 more tests are to be performed
- Participants' proposals concerning the remaining tests concretization and possible corrections to the Experimental Matrix have been discussed at the last, 3rd Meeting and by e-mails. Next test procedure will be distributed before the mid of April
- Due to a delay in Project implementation a 6-month project time extension without additional funding has been approved by the ISTC

METCOR-P project reporting

Report code	Title	Status				
RMP- 01	Interaction of molten corium with vertically positioned vessel steel specimen in the neutral atmosphere. Test MCP-1					
RMP- 02	RMP- 02 Interaction of molten corium UO _{2+x} -ZrO ₂ with horizontally positioned vessel steel specimen in the steam atmosphere. Test MCP-2					
RMP- 03	Interaction of suboxidized corium melt with steel at the replacement of neutral atmosphere by oxidizing atmosphere. Test MCP-3					
F1-3592/2008	Annual report on METCOR-P. First year					
F2-3592/2009	Annual report on METCOR-P. Second year					
RMP- 04r	Interaction of molten corium with European vessel steel in oxidizing atmosphere. Test MCP-4	Ready in Russian version				
-	Interaction of suboxidized molten corium with European vessel steel. Test MCP-5	In progress				

✓ First three reports have been sent to ITU under export control conditions

Publications during METCOR-P

- Bechta S.V., Granovsky V.S., Khabensky V.B., Krushinov E.V., Vitol S.A., Sulatsky A.A., Gusarov V.V., Almjashev V.I., Lopukh D.B., Bottomley D., Fischer M., Piluso P., Miassoedov A., Tromm W., Altstadt E., Fichot F., Kymalainen O. Interaction between Molten Corium UO_{2+x}-ZrO₂-FeO_y and VVER Vessel Steel // Proceeding of ICAPP'08, Anaheim, CA USA, June 8-12, 2008, Paper 8052.
- Bechta S.V., Granovsky V.S., Khabensky V.B., Krushinov E.V., Vitol S.A., Sulatsky A.A., Gusarov V.V., Almjashev V.I., Mezentseva L.P., Krushinov E.V., Kotova S.Yu., Kosarevsky R.A., Barrachin M., Bottomley D., Fischer M., Fichot F. Corium Phase Equilibria from MASCA, METCOR and CORPHAD Results // Nucl. Eng. and Design, 238, p. 2761-2771 (2008).
- Bechta S.V., Granovsky V.S., Khabensky V.B., Krushinov E.V., Vitol S.A., Sulatsky A.A., Gusarov V.V., Almjashev V.I., Lopukh D.B., Bottomley D., Fischer M., Piluso P., Miassoedov A., Tromm W., Altstadt E., Fichot F., Kymalainen O. VVER Vessel Steel Corrosion at Interaction with Molten Corium in Oxidizing Atmosphere // Nucl. Eng. and Design, 239 (2009), p. 1103-1112.

Publications during METCOR-P (2)

- Bechta S.V., Granovsky V.S., Khabensky V.B. et.al. VVER Steel Corrosion during In-Vessel Retention of Corium Melt // Proceeding of the 3rd European Review Meeting on Severe Accident Research (ERMSAR 2008), Paper 2.7, Nesseber, Bulgaria, September 23-25 (2008).
- Bechta S.V., Granovsky V.S., Khabensky V.B. et.al. Interaction between Molten Corium UO_{2+x}-ZrO₂-FeO_y and VVER Vessel Steel // J. Nucl. Technology, Vol. 170, №1 (2010), p. 210-218