

A.P. Alexandrov Research Institute of Technology

"Phase Diagrams for Multicomponent Systems Containing Corium and Products of its Interaction with NPP Materials" (CORPHAD.2)

Presented by S. Bechta 11th CEG-SAM Meeting March 6-9, 2007, Dresden

Contents

- CORPHAD Project general information
- Project focus
- Test matrix
 - Methodology
 - **Results in respect to:**
 - Binary oxide systems
 - Ternary oxide systems
 - Metal-oxide systems
 - Complex corium mixture

Reporting

 \geq

 \sim

- Papers
- CORPHAD-P project proposal
- Conclusions

CORPHAD project general information

Project participants and coordination

	Project Development Grant #1950 1	CORPHAD project
Project duration	9 months	41 months*
Financial parties	Europe	Europe
Project status	Completed	Completed

CORPHAD project focus

Project objective:

Experimental study of phase diagrams of corium/NPP material mixtures

Experimental data output

Liquidus and solidus temperatures versus components concentration
Temperature-concentration regions of the miscibility gap
Coordinates of eutectic, dystectic and other characteristic points
Solubility limit of solution phases

Data application

Thermodynamic database optimisation
Thermodynamic code validation
Corium behaviour modelling

CORPHAD.2 project test matrix

Composition	Atmosphere	Experimental data	
UO ₂ -FeO	Argon/Lolium	liquidus, solidus,	
ZrO ₂ – FeO	Argon/Hellum	eutectic points	
SiO ₂ – Fe ₂ O ₃ /Fe ₃ O ₄	Helium/Air/ Oxygen	liquidus, solidus, miscibility gap, eutectic points	
$UO_2 - SiO_2$	Argon	miscibility gap	
UO ₂ – ZrO ₂ – FeO/Fe ₂ O ₃	Argon/Air	ternary eutectic points	
U-0			
U – Zr – O	Argon	liguidus, solidus,	
Zr – Fe – O	Argon	miscibility gap	
U – Fe – O			
Complex corium mixture $UO_2 - SiO_2 - ZrO_2 - Al_2O_3 - CaO - FeO - Cr_2O_3$	Nitrogen	liquidus, solidus	

Visual polythermal analysis in the cold crucible (VPA IMCC)

- Formation of molten pool of specified composition
- Melt sampling
- Local cooling of surface layer of superheated pool by crucible lifting against inductor coil or by the layer shielding

Surface temperature measurement of the melt coexisting with solid phase nucleus

Transient to initial superheated conditions and repetition of measurements

- 1 Bottom calorimeter
- 2 Movable water-cooled electromagnetic screen
- 3 Pyrometer shaft
- 4 Pyrometer couple with video camera,
- 5, 6 DAS
- 7- Monitor/videotape recorder
- 8- Crucible vertical drive

Visual polythermal analysis in the Galakhov microfurnace

Test parameters:

Temperature up to 2500oC Vacuum (10-5 - 10-6 atm) or inert gas atmosphere (He, Ar up to 2 atm) Maximum heating rate – ca. 200 K/s Specimen holder material – tungsten, iridium Specimen weight – 100-200 mg τ heating ~10 s τ melting ~0.1s

- Calibration by using reference substances (Pt; Pd; Ag; Au; Al₂O₃ etc.)
- Heating is controlled automatically; the heating/cooling curve is specified
- Tsol and Tliq are fixed at the beginning of first liquid formation and of melt spreading across the tungsten (iridium) holder
- The maximum error of the method \pm 50 °C

Visual polythermal analysis in the High-temperature microscope (HTM)

Temperature up to 2400°C

Air, oxygen, inert gas (He, Ar) with controlled oxygen partial pressure (p_{O2} =10⁻¹⁸–1 atm)

Sample holder material – iridium

Sample weight – 10-50 mg

TG, DTA and DSK measurements: SETERAM SETSYS evolution thermoanalyser

Methodology: annealing at different temperatures and quenching

Radiant microfurnace

- Control and monitoring system
- Pyrometer RAYTEK MR1-SC
- Video cameras
- Heater (W)
- Crucible (Mo)
- 6. Holder (Mo)
 - Water-cooled furnace wall
 - Electromagnetic lock
- 9. Chamber for specimen quenching
- 10. Generator
- 11. Vacuum pump
- 12. Gas tank (Ar, Ar+H2, He+ H2)

Crucible – Mo, Ir, Ta, W, ZrO₂, Al₂O₃, UO₂
Experimental conditions should exclude specimen - crucible interaction

Ternary oxide systems Eutectic point for UO₂-ZrO₂-FeO (argon)

Results: Ternary oxide systems Eutectic point for UO_2 -Zr O_2 -Fe $_2O_3$ (air)

Liquidus in U-Zr-O

	Compo	sition,	T _{liq} , K		
Test	U	Zr	ο	Test	Calcula tion
CORD 28-I	7.7	53. <mark>7</mark>	38.6	2358±35	2238
CORD 28-II	12.9	43 <mark>.</mark> 9	43.2	2443±36	2357
CORD 29	19.8	17.2	63.0	2734±41	2803
CORD 34	21.5	34.7	43.8	2578±38	2470
CORD 37	32.5	29.2	38.3	2601±39	2570
CORD 41	56.0	3.1	40.9	2788±42	2690
CORD 42	40.5	27.0	32.5	2663±40	2595
CD-1	22.9	19.1	58.0	2643±39	2650
CD-2	25.7	15.8	58.5	2673±40	2700
CD-3	13.0	43.0	44.0	2408±36	2362
CD-4	8.0	52.0	40.0	2373±35	2231
CD-5	16.0	36.0	48.0	2498±37	2426

Liquid immiscibility was detected

CORD series ("Rasplav-3", Alexandrov RIT)
CD series ("Tigel", RRC "Kurchatov Institute")

Solidus data are unreliable

Results: Metal-oxide systemsLight liquidMethodological test in U-O system

Miscibility gap in U-Zr-O

Melt composition,	U _{0.325} Zr _{0.292} O _{0.383}	
Temperature,K	2643	
Oxide liquid composition,	U	25.2±1.2
	Zr	26.7±1.3
aT%	0	48.2±2.4
Metal liquid	U	40.8±2.0
composition,	Zr	32.2±1.6
ат%	0	27.2±1.3

Miscibility gap in U-Zr-O

Melt composition,	ат%	U _{0.405} Zr _{0.270} O _{0.325}
Temperature,		2753
	U	27.7±1.3
composition,	Zr	23.2±1.1
d1 /0	Ο	49.2±2.4
Metal liquid	U	53.2±2.6
composition, ат%	Zr	29.3±1.4
$\overline{\Lambda}$	0	17.6±0.8

Zr

Liquidus and solidus in Zr-Fe-O

CORD	Conce	ntration	, at.%	Experiment		Calculation	
	Zr	Fe	Ο	T _{liq} , K	T _{sol} , K	T _{liq} , K	T _{sol} , K
30	59.1	32.8	8.1	2125	-	2190	1255
33	49. 7	19.7	30.6	<mark>2</mark> 655	1707	2622	1750
35-I	50.2	20.0	29.8	2653	1717	2627	1750
35-II	59.2	28.5	12.2	2293	-	2303	1380
39	45.4	25.8	28.8	2763	- /	2674	1750
44	66.2	30.7	3.1	2053	17 <mark>1</mark> 3	2032	1210
45	27.0	65.3	7.7	<mark>2</mark> 793	1796	2820	1610

Results: Metal-oxide systems CORD39 FE 1.0 \ /0.0 T = 2773.15 K 0.9 0.81 0.20.3CORD45 (2810 K) 0.6° -0.4 Melt composition, 0.51 ~0.5 ат% -0.6 0.4 Temperature,K 0.3° -0.7 CORD39 ___(2793 K) Oxide liquid 0.2 composition, L1 ат% ⁻0.9 0.1 ZR 0 0.3 0.2 0.9 0.8 0.7 0.6 0.5 0.4 0.1 0.0 1.0 Metal liquid Mole Fraction

FE-O-ZR

Miscibility gap in Zr-Fe-O

CORD45

Zr_{0.454}Fe_{0.258}O_{0.288}

2793

44.8±2.2

 6.4 ± 0.3

48.7±2.4

48.7±2.4

26.1±1.3

25.2±1.3

Zr

Fe

0

Zr

Fe

0

composition,

ат%

Light liquid

Melt compos ат%	U _{0.63} Fe _{0.22} O _{0.15}	
Temperatu	2873	
Oxide liquid	U	43.3±2.0
composition	Fe	2.0±0.2
ат%	0	54.7±3.0
Metal liquid	U	68.0±3.0
composition	Fe	23.5±1.2
ат%	0	8.5±0.8

لىيىيا 150 µm

U-Fe-O

لىيىيا 80 µm

Heavy liquid

Results: Complex corium mixture 54.2UO₂ - 13.7SiO₂ - 17.9ZrO₂ - 1.3Al₂O₃ - 3.8CaO - 7.6FeO - 1.5Cr₂O₃

Melt composition, mass%	UO ₂	ZrO ₂	FeO	SiO ₂	CaO	Al ₂ O ₃		Experimental data Calculation			
								T _{liq} , K	T _{sol} , K	T _{liq} , K	T _{sol} , K
	53.0	18.6	7.8	12.9	3.8	2.0	1.9	2493	1477	2290	1350

CORPHAD Reports

Report code	Title	Status
RCP-0401	Investigation of binary oxidic systems: System UO ₂ -FeO	
RCP-0402	Investigation of binary oxidic systems: System ZrO ₂ -FeO	
RCP-0403	Phase relation study in the system Fe ₂ O ₃ (Fe ₃ O ₄) – SiO ₂ at different oxygen partial pressures	one
1-1950.2-2004	PROJECT № 1950.2. Annual progress report. First year	DC
RCP-0404	Investigation of ternary oxidic systems: UO _x -ZrO ₂ -FeO _y	
2-1950.2-2005	PROJECT № 1950.2. Annual progress report. Second year	
Z 1.5-1950.2r	Investigation of ternary metal/oxide systems: U-O-Zr	
Z 1.6-1950.2r	Investigation of ternary metal/oxide systems: Zr-O-Fe	E C
Z 1.7-1950.2r	Investigation of ternary metal/oxide systems: U-Fe-O	ssia sio
Z 1.8-1950.2r	Investigation of oxidic systems:UO ₂ -SiO ₂	Ru:
Z 1.9-1950.2r	Investigation of complex corium mixrure	

CORPHAD Papers

- Bechta S.V., Krushinov E.V., Almjashev V.I., Vitol S.A., Mezentseva L.P., Petrov Yu.B., Lopukh D.B., Khabensky V.B., Barrachin M., Hellmann S., Froment K., Fischer M., Tromm W., Bottomley D., Defoort F., Gusarov V.V. Phase diagram of the ZrO₂–FeO system // J. Nucl. Mater. Vol. 348, pp. 114-121 (2006)
- Bechta S.V., Krushinov E.V., Almjashev V.I., Vitol S.A., Mezentseva L.P., Petrov Yu.B., Lopukh D.B., Khabensky V.B., Barrachin M., Hellmann S., Gusarov V.V. Phase relations in the ZrO₂-FeO system // Russian J. Inorg. Chem. 2006. V. 51. N 2. P. 325-331.
- Mezentseva L.P., Popova V.F., Almjashev V.I., Lomanova N.A., Ugolkov V.L., Beshta S.V., Khabensky V.B., Gusarov V.V. Phase and chemical transformations in the SiO₂–Fe₂O₃(Fe₃O₄) systems at various oxygen partial pressure // Russian J. Inorg. Chem. 2006. V. 51. N 1. P. 125-133.
- Bechta S.V., Krushinov E.V., Almjashev V.I., Vitol S.A., Mezentseva L.P., Petrov Yu.B., Lopukh D.B., Lomanova N.A., Khabensky V.B., Barrachin M., Hellmann S., Froment K., Fischer M., Tromm W., Bottomley D., Gusarov V.V. Phase Transformation in the Binary Section of the UO₂–FeO–Fe

System // Russian J. Radiochemistry. 2007. V. 49. N 1. P. 20-24.

- Bechta S.V., Krushinov E.V., Almjashev V.I., Vitol S.A., Mezentseva L.P., Petrov Yu.B., Lopukh D.B., Khabensky V.B., Barrachin M., Hellmann S., Froment K., Fischer M., Tromm W., Bottomley D., Gusarov V.V. UO₂–FeO phase diagram // J. Nucl. Mater. 2007, in press
- Mezentseva L.P., Popova V.F., Almjashev V.I., Lomanova N.A., Ugolkov V.L., Bechta S.V., Khabensky V.B., Barrachin M., Hellmann S., Gusarov V.V. **Phase diagrams of the SiO**₂– **Fe**₂**O**₃(**Fe**₃**O**₄) systems in different gas atmosphere // J. Europ. Ceram. Soc., in press

CORPHAD Papers in preparation

Draft titles:

Eutectic compositions in the UO_2 -Zr O_2 -FeO/Fe₂ O_3 systems Miscibility gap in the UO_2 -Si O_2 system Miscibility gap in the U-O system

CORPHAD-P * Matrix

Task	Composition	Atmosphere	Experimental data	Priority level	Pt N
1	Different compositions in the U-Zr-Fe-O system	Argon	Selected points (liquidus, solidus, tie- lines in the miscibility gap)	1	3
2	ZrO ₂ - FeO _y	Air and p ₀₂ control	liquidus, solidus, solubility limits	2	3
	$UO_2 - SiO_2$			1	7
	CaO - UO ₂		liquidus, solidus, solubility limits,	1	7
Ca	CaO - FeO	Argon		2	3
3	UO ₂ – FeO – SiO ₂		liquidus, solidus solubility limits, tie- lines in the miscibility gap, ternary eutectic point	1	10
UO ₂ – FeO	UO ₂ – FeO – CaO		liquidus, solidus solubility limits, ternary eutectic point	1	10
	ZrO ₂ - FeO - SiO ₂		ternary eutectic point	2	2
	ZrO ₂ - FeO - CaO		ternary eutectic point	2	2
4	Realistic complex corium mixture	Argon or Air	Eutectic composition measurement proposed by French partners (1 system), proposed by German partners (1 system), proposed by Russian partners (1 system)	2	3

*) - tentative title

Concluding remarks

✓ CORPHAD data for oxide systems have been finalized, partially published and used for optimization of NUCLEA database

✓ Data for metal/oxide systems will be finalized after discussion with collaborators at the last project meeting (May 2007, St-Petersburg)

✓ Technical content of CORPHAD-P project proposal has been agreed about. The proposal will be prepared to the next CEG-SAM