

Status of the ISTC project #3345 "Ex-vessel source term analysis" (EVAN)", phase 1

(R)

Vladimir Bezlepkin (SPAEP)

11th Meeting of Contact Expert Group on Severe Accident Management (CEG-SAM)

> March 6-9, 2007 Dresden

- WP1: Analysis of Severe Accident Scenarios (SPAEP, IBRAE)
- WP2: FP release from molten corium pool
 - Task 2: Experimental investigations (NITI)
 - Task 3: Theoretical and numerical modeling (IBRAE)
- WP 3: Primary aerosol transport/deposition
 - Task 4: Experimental investigations (NPO CKTI)
 - Task 5: Theoretical and numerical modeling (SPAEP, IBRAE)
- WP 4: Containment parameters impact on iodine species behaviour
 - Task 6: Experimental investigations (VNIPIET)
 - Task 7: Theoretical and numerical modeling (VNIPIET, SPAEP)

Foreign Collaborators/Partners

•	Dr. Ari Auvinen	VTT	Finland
•	Dr. Hans-Josef Allelein	GRS	Germany
•	Dr. Paul David Bottomley	JRC-ITU	Germany
•	Dr. Salih Guenty	PSI	Switzerland
•	Dr. Bernard Clement	IRSN	France
•	Dr. Herve Chalaye	CEA-DEN	France

WP1:Fission products inventories (VVER, PWR)

Fission products	Mass, %	Activity at 0 days, %	Activity at 30 days, %
Хе	0,44	3,9	0,4
1	0,02	5,2	0,7
Cs	0,2	3,5	1,3
Ru	0,19	1,7	9,7
Sr	0,07	4,2	6,7
Мо	0,27	3,9	0,01
Ва	0,14	4,4	2,9
Се	0,23	3,3	15,3
La	0,1	4,8	0,0
summ	1,7	35	37

After 3 years of operation, Birnup: 45 GW/t of UO₂

WP1:Nodalization scheme of WWER-1000 NPP

WP1:Phases of in -vessel stage of severe accident (Large LOCA:D=346 mm)

Key stages of accident propagation	Time, s
Commencement of core dry-out	12
Actuation of ECCS accumulators in case of pressure drop in RPV down to 5.9 MPa (supply of borated solution in the upper and lower chambers of the reactor)	55
Re-filling of the core	80
Disconnection of ECCS accumulators	137
Commencement of re-dry-out of the core	140
Commencement of core heat-up	910
Commencement of hydrogen generation	1000
FA cladding temperature is in excess of the design threshold (1473 K)	1607
Complete re-dryout of the core	1560
Degradation of film ZrO2 of FA claddings (T>2250K)	2328
Release of the materials of the damaged part of the core and internals into the reactor lower chamber	2015
Generation of local melt baths in the core. Excess of fuel melting temperature in the degraded part of the core (T>2850K)	2570
Melt-through of the suspended reactor shaft barrel at the reactor bottom	6170
RPV failure. Release of the first portion of corium into the core catcher.	8345

WP1: Phases of in-vessel stage of accident (Small LOCA: D=25 mm)

Key stages of accident propagation	Time, s
Commencement of core dry-out	1200
Actuation of ECCS accumulators in case of pressure drop in RPV down to 5.9 MPa (supply of borated solution in the upper and lower chambers of the reactor)	7700
Re-filling of the core	7700
Commencement of core heating	12500
Disconnection of ECCS accumulators	13800
Commencement of re-dryout of the core	13900
Commencement of intensive hydrogen generation	15200
Temperature of FA cladding is in excess of design limit (1473 K)	15650
Degradation of film ZrO2 of FA cladding (T>2250K)	16160
Complete re-dryout of the core	16400
Commencement of release of materials of degraded part of the core and internals into the lower plenum chamber	17445
Formation of local corium baths in the core. Excess of fuel melting temperature in the damaged part of the core (T>2850K)	19300
Melt-through of the suspended reactor shaft barrel. Release of corium onto the reactor bottom	26788
RPV failure, release of the first portion of corium into the core catcher.	29810

WP1: Melt structure at the reactor bottom during large LOCA

WP1: Parameters of melt during large LOCA

Time, s	Structure of melt, mass fraction	Temperature, K
6 200	Metallic layer: Steel = 0,928; Zr = 0,072 Oxidic layer: UO2 = 0.786; ZrO2 = 0.118; Zr = 0.096	3010-2900 2900-2850
8 955	UO2 = 0,720; ZrO2 = 0,108; Zr = 0,052; Steel = 0,120	3060-2780
9 155	UO2 = 0,682; ZrO2 = 0,102; Zr = 0,049; Steel = 0,167	3050-2780
9 370	UO2 = 0,650; ZrO2 = 0,097; Zr = 0,047; Steel = 0,206	3020-2700
10 224	UO2 = 0,533; ZrO2 = 0,080; Zr = 0,038; Steel = 0,349	2900-2600
11 820	End of melt relocation	

WP1: Melt structure at the reactor bottom during small LOCA

WP1: Parameters of melt during small LOCA

Time, s	Structure of melt, mass fraction	Temperature, K
26 800	Metallic layer : Steel = 0,94; Zr = 0,06 Oxidic layer :	2940-2880
	UO2 = 0,779; ZrO2 = 0,208; Zr = 0,13	2880-2750
31 560	UO2 = 0,627; ZrO2 = 0,199; Zr = 0,007; Steel = 0,167	2900-2750
32 060	UO2 = 0,577; ZrO2 = 0,183; Zr = 0,006; Steel = 0,234	2880-2700
32 540	UO2 = 0,542; ZrO2 = 0,166; Zr = 0,003; Steel = 0,289	2880-2630
32 940	UO2 = 0,503; ZrO2 = 0,154; Zr = 0,003; Steel = 0,341	2720-2620
34 400	UO2 = 0,434; ZrO2 = 0,133; Zr = 0,002; Steel = 0,431	2540
36 000	End of melt relocation	

Test objective

Determination of release rates of fission product simulants and melt components at corium oxidation transient from C70 to C100

Furnace for melt generation

≻Transient with corium melt oxidation by Ar/O₂ mixture from C70 to C100

- 1 Main aerosol line
- 2 Furnace lid
- 3 Quartz tube
- 4 Inductor
- 5 Melt
- 6 Cold crucible
- 7 Bottom calorimeter
- 8 Cold crucible manifold

Gas/aerosol analytical scheme

1 –Dryer 2 – Flow controllers 3 – Oxygen sensor 4 – Flow meter 5 – Vibrator
6 – Induction furnace with cold crucible 7 – Medium area filter 8 – Analytical filters
9 – Bubblers for Ru absorption P – Pressure meters, T – Thermocouples type L

Charge composition

Component	Component content in molten corium at VVER- 1000 severe accident, mass %	Component content in charge, mass %
UO ₂	76.268	72.64
ZrO ₂	9.375	19.38
Zr	12.5	6.15
SrO	0.139	0.14
CeO ₂	0.461	0.45
BaO	0.236	0.23
La ₂ O ₃	0.202	0.20
Ru	0.352	0.35
Мо	0.469	0.46

Main parameters of melt

- Melt mass: 1800 g
- Initial index of corium oxidation: C-70
- U/Zr = 1.2
- Melt temperature: 2560°C

Above-melt atmosphere

- dry, high-purity Ar
- Argon/oxygen mixtures with O_2 volume fraction 5…20 vol. %

WP2: Modeling of fission product release from molten corium for pretest estimations

Development and realization of model

-thermodynamic model of system based on U-Zr - Fe – O
 -evaporation rate – Langmuir equation:

$$V = 44.44 \cdot \bar{p}_{k} (atm.) \cdot \beta_{k} \cdot (M_{k}/T)^{0.5}, g/cm^{2} * s$$

RT ln $a_{k} = RT \ln x_{k} + \sum_{i \neq k}^{n} L_{ki} \cdot x_{j} \cdot (1 - x_{k}) - 0.5 \sum_{i \neq k}^{n} \sum_{i \neq k}^{n} L_{ij} \cdot x_{i} \cdot x_{j}$

•Estimate of parameters characterizing interaction of oxygen with fission products – series of STFM-FP tests according to program "Masca" – for system U-Zr-Ru-O

$$\begin{array}{l} L_{U\text{-}Zr} = 19075 \\ L_{U\text{-}Ru} = 8200 \\ L_{U\text{-}O} = -9180 \\ L_{Zr\text{-}Ru} = 19960 \\ L_{Zr\text{-}O} = -42470 \\ L_{Ru\text{-}O} = 224900 \end{array}$$

•Example: Ru release from molten C-32 corium with atomic ratio U/Zr=0.9: V_{Ru} = 3.5·10⁻⁷ g/cm² ·s

Assessment of oxidation rate by "as it is" SOCRAT models

- Account for Oxygen
 convection in the melt
- Unlimited oxygen at melt boundary
- Oxygen rate 10 I/min total sample oxidation for 3 min
- At experimental values

 1,2,5,10, 20 % vol melt
 oxidation will be controlled by
 amount of available oxygen

Melt Oxidation Status

WP3: Aerosol characteristic

Aerosol diameter, μm g/s		Carrier gas flow rate, m/s	Concentration, g/m ³
0,1-10 (at primary circuit)	100-300 (at Zr oxidation)	In reactor – up to 10 In pipes – up to 100 and higher	1-10 (at maximum release)

WP3: Experiment A1-10

Test objectives:

- Study of turbulent deposition

Facility scheme:

- 1 Working section;
- 2 Ventilator;
- 3 Aerosol generator;
- 4 Aerosol sizer;
- 5 Mixing chamber;
- 6 Aerosol neutralization system;
- 7 Automated data gathering and processing system.

WP3: Pretest Analysis

Input data for calculations:

- ✓ Straight pipe: 6.2 m in length; 0.098 m in diameter
- ✓ Isothermal conditions
- ✓ Range of gas rate: 0.5–100 m/s
- ✓ Flow mode turbulent
- ✓ Particle flow monodispersed
- ✓ Size range: 0.3–10 µm
- ✓ Particle density range: 1000–4000 kg/m³

Modelling by SOKRAT/PROFIT code

WP3: Preparation of LES code

Implemention of particle model
Adaptation of code for calculation in

cylindrical coordinates •Comparison of numerical solution with analytical and verification

WP4: Contaiment and sump parameters typical for severe accident of VVER-1000

Concentration of H ₃ BO ₃ in water pool, g/l	Temperature, C	рН	Doze rate / (integral doze)
15-16	up to 160	4 (no maintenance of pH) 7-8 (with maintenance of pH during severe accident)	2,2- 67 kGy/h in first day (up to 500 kGy per 30 days)

WP4: Parameters of coolants and spray solution

				Concentration				
Medium, solution	Weight (t)	рН	H ₃ BO ₃ (g/l)	Alkali metals K ⁺ +Li ⁺ +Na ⁺ (mg-equ./l)	NH ₃ , (mg/kg)	CI ⁻ (mg/kg)	Fe (mg/kg)	N ₂ H ₄ * H ₂ O
Primary coolant	240	5.8- 10.3	0-16	0.50 (K ⁺ +Li ⁺ +Na ⁺ mg-equ./I)	5.0	0.1	0.05	-
ECCS hydrotanks	200	6.5	16.0	0.1-0.2 (only K ⁺ g/l ⁾	-	-	-	200 mg/kg
Borated water tanks	1800	4.2	16.0	-	-	0.15	-	-
Boric acid alkali solution tanks	30		40	100-150 (only K ⁺ g/l ⁾	-	-	-	200- 300 mg/kg

1 - thermostat (20-150 °C); 2 – autoclave (Teflon); 3 – gas phase; 4 – aqueous solution (I⁻); 5 – iodine source; 6 – iodine concentration and species analysis in the aqueous phase; 7 – pH, potential and pI measuring instrument; 8 –iodine species separation in gas samples: 8a – adsorbing filters (or sorbents); 8b – barbateur; 9 – water-jet pump; 10 - thermocouple; 11 – platinum electrode; 12 – compared electrode; 13 – glass electrode; 14 – iodide-selective electrode; 15 – iodine sensor; 16 – locked tap; 17 – line of solution sampling or vapour I₂ (gas) supply; 18 – heater; 19 – gas sample volume measuring

- Autoclave was prepared for research of iodine water/gas partition in presence of sorbent -ferric hydroxide.
- Methodics were developed for analysis of iodine concentration in samples of water/gas phases.
- Ferric hydroxides were prepared by its precipitation in solution of ferric chloride or ferric nitrate.
- The iron concentration and characteristics of ferric hydroxides were determinated.

WP4: Modelling

- Kinetic model has been developed for calculating the distribution of iodine forms among aqueous and gaseous phases
- The model is a system of equations describing water radiolysis, iodine hydrolysis reactions, interaction of iodine forms with water radiolysis products and organic impurities, iodine sorption on equipment and containment surfaces, mass exchange between aqueous and gaseous phases
- The code is structured as a four-block tool: aqueous phase, gaseous phase, sorption/desorption on surfaces, pH calculation.
- The database contains 42 reactions: 20 iodine reactions include 10 iodine forms,14 reactions of 8 boron and ammonia forms, 4 reactions with iron ions and 4 reactions with three organic forms of iodine.

WP4: Modelling (2)

- The radiolysis block contains system of equation for water radiolysis.
- Ist version of iodine module has been prepared. This version can take into account influence of impurities (NH3 and products of ammonia radiolysis, H3BO3, Fe3+, CH4) and iodine sorption on polymeric coating. As the main source of volatile forms of iodine in the containment atmosphere is mass exchange between aqueous and gaseous phases, and most of iodine is removed from water due to sorption in aqueous phase, changing of the rate constants for these processes is critical.
- Adapted iodine model and calculation code are used in pretest calculations for WP4

Modelling: Constants of radiolytic and chemical reactions

No.	Reaction	Rate constant k ₂₉₈ (l/mol·s)	Activation energy E _a (kJ/mol)
1	$I_2+H_2O\rightarrow I_2OH^-+H^+$	$1.0 \cdot 10^{10}$	12.5
2	$I_2OH^-+H^+\rightarrow I_2+H_2O$	$3.0 \cdot 10^{10}$	-
3	$I_2OH^- \rightarrow HOI + I^-$	1 ·10 ⁶	-
4	HOI+I [−] →I ₂ OH [−]	$6.1 \cdot 10^2$	-
5	$2\text{HOI} \rightarrow \text{IO}_2^- + \text{I}^- + 2\text{H}^+$.34 ·10 ⁶	-
6	$IO_2^-+I^-+2H^+\rightarrow 2HOI$	$1.7 \cdot 10^{10}$	-
7	$HOI+IO_2^{-} \rightarrow IO_3^{-}+I^{-}+H^{+}$	$1.0 \cdot 10^7$	-
8	$IO_3^-+I^-+H^+ \rightarrow HOI+IO_2^-$	0.58	-
9	$2I \rightarrow I_2$	$1.0 \cdot 10^{10}$	-
10	$I_2+OH_2^- \rightarrow HOOI+I^-$	4.0 $\cdot 10^{8}$	16.0
11	$HOI+I^- \rightarrow I_2 + HO_2^-$	5.0 ·10 ⁵	16.0
12	HOI+HO ₂ [−] →HOOI+OH [−]	$2.1 \cdot 10^{9}$	16.0
13	$HOOI+OH^- \rightarrow I_2^- + O_2 + H_2O$	$2.0 \cdot 10^{9}$	16.0
14	$I_2 + O_2 \rightarrow I_2 + O_2$	3.9 ·10 ⁹	6.7
15	$H_3BO_3+H_2O\rightarrow H^++H_4BO_4^-$	8.11 $\cdot 10^{1}$	7.6
16	$H^+ + H_4BO_4^- \rightarrow H_3BO_3 + H_2O$	$1.4 \cdot 10^{11}$	12.6
17	$NH_3+H_2O\rightarrow NH_4^++OH^-$	$5.94 \cdot 10^5$	(to be determined)
18	$NH_4^++OH^-\rightarrow NH_3+H_2O$	$3.3 \cdot 10^{10}$	12.6
19	$NH_4^++e_{aq}^-\rightarrow NH_3+H$	$1.7 \cdot 10^{6}$	20.93
20	NH ₃ +OH→NH ₂ +H ₂ O	9.0 ·10 ⁷	13.94

Modelling: Constants of radiolytic and chemical reactions (2)

21	$NH_3+H\rightarrow NH_2+H_2$	$1,1 \cdot 10^{1}$	13,94
22	$NH_2+H_2O_2\rightarrow H_2O+NHOH$	9,0 ·10 ⁷	13,94
23	$NH_2+HO_2\rightarrow O_2+NH_3$	1,0 ·10 ¹⁰	12,6
24	$NH_2+O_2^-\rightarrow O_2+NH_3+OH^-$	1,0 ·10 ¹⁰	12,6
25	$NH_2+H\rightarrow NH_3$	1,0 ·10 ¹⁰	12,6
26	$NH_2+e_{aq}\rightarrow NH_3+OH$	1,0 ·10 ¹⁰	12,6
27	$2NHOH \rightarrow N_2 + 2H_2O$	1,0 ·10 ¹⁰	12,6
28	$NH_2+NHOH \rightarrow N_2+H_2+H_2O$	1,0 ·10 ¹⁰	12,6
29	$Fe^{3+}+e_{aq} \rightarrow Fe^{2+}+H_2O$	$2,3 \cdot 10^{10}$	12,6
30	$Fe^{3+}+H\rightarrow Fe^{2+}+H^+$	9,6 ·10 ⁷	12,6
31	Fe ²⁺ +OH→Fe ³⁺ +OH ⁻	3,0 ·10 ⁸	12,6
32	$Fe^{2+}+HO_2 \rightarrow Fe^{3+}+HO_2^{-}$	3,0 ·10 ⁷	12,6
33	CH₄+OH→CH₃+H₂O	$1,21 \cdot 10^8$	
34	CH ₃ +I ₂ →CH ₃ I+I	6,0 ·10 ⁹	—
35	$CH_3I + e_{aq} \rightarrow CH_3 + I^-$	1,6 ·10 ¹⁰	—
36	$CH_3I+H\rightarrow CH_3+H^++I^-$	1,0 ·10 ¹⁰	
37	$HOI \rightarrow H^+ + IO^-$	0,1	—
38	$H^++IO^- \rightarrow HOI$	1,0.10 ¹⁰	—
39	$I_2+I^- \rightarrow I_3^-$	4.5·10 ⁹	
40	$I_3 \rightarrow I_2 + I^-$	7,5·10 ⁶	
41	$HOI^- + I \rightarrow I_2 + OH^-$	2,3 ·10 ¹⁰	
42	$2\mathrm{HOI}^- \rightarrow \mathrm{I}_2 + 2\mathrm{OH}^-$	2,0.10 ¹⁰	

Pretest calculations of volatile iodine forms (I_2 , I) concentration in gas phase were carried out with consideration of iodine forms adsorption on ferric hydroxide.

Ampule test conditions:

 Composition of aqueous solution: 1e-005-1e-007 mol/l Cs(K)l + 10 g/l boric acid.

- Temperature 25 C
- Dose rate 1 kGy/h, integral dose 10 kGy.
- Initial iodide-ion concentration in water, mol/I: 1e-005; 1e-007;
- pH: 4; 6,5; 8
- FeOOH concentration, g/l:

4; 6,5; 8; 0; 2,5.

! Presence of organic impurities and iodine adsorption on inner ampule surfaces doesn't accounted in calculations.

WP4: Results of pretest calculations <u>Iodine consentrations(mol/l) versus time (h). pH=</u>8

Iodine volatile forms concentration in gas phase in presence or absence of sorbent (FeOOH); pH=8

•lodide-ion concentration in water solution=1e-007.

lodide adsorption = ~35%.

 Iodide-ion adsorption on ferric hydroxide doesn't much influence on iodine volatility at low iodide concentration in water solutions and pH=8.

WP4: Results of pretest calculations <u>Iodine consentrations(mol/l) versus time (h). pH=</u>4

Iodine volatile forms concentration in gas phase in presence or absence of sorbent (FeOOH); pH=4

lodide concentration in
water solution = 1e-007 mol/l.

•lodide-ion adsorption on FeOOH =~95%.

•At low pH and iodide-ion concentration in adsorbent presence

Iodine volatile species release is reduced in 2,5-3 time.

CONCLUSIONS

- Analysis of VVER-1000 scenarios provided conditions of experiments of WP2, 3, 4
- Conceptual design of test facilities have been done on the base of pretest calculations
- The planned tests will be descussed with collaborators at the 1st project meeting. Meeting dates will be coordinated by e-mail.