

Progress report on the ISTC project #3813: Phase relation in corium systems (PRECOS)

Presented by S. Bechta 18th CEG-SAM meeting St. Petersburg, Russia September 28-30, 2010

Contents

General information Project objectives > PRECOS test matrix Scope of work in quarters 8 - 9 > Test results: UO₂-CaO system UO₂-SiO₂- FeO system UO₂-CaO- FeO system Concluding remarks

PRECOS project general information

Project objectives

- **Experimental determination of:**
- > liquidus solidus temperatures
- > coordinates of reference points (eutectics, etc.)
- Solubility limits of solid solutions
- > compositions of liquids coexisting in the miscibility gap

Task	Composition	PREC Atm	COS test matrix Experimental data	Priority level	Number of tests scheduled /carried out
1	U-Zr-Fe-O	Argon	Selected points (liquidus, solidus, tie-lines in the miscibility gap)	1	6/8 ¹
2	ZrO ₂ - FeO _y	Air and p _{o2} control	liquidus, solidus, solubility limits	2	3/3²
	UO ₂ - SiO ₂	Neutral	liquidus, solidus, solubility limits, eutectic point	1	7/(5 ³ +40 ⁴)
	CaO - UO ₂			1	7/7 ³
3	UO ₂ – FeO – SiO ₂		liquidus, solidus, solubility limits, tie-lines in the miscibility gap, ternary eutectic point	1	10/(1 ³ +4 ⁴)
	UO ₂ – FeO – CaO		liquidus, solidus, solubility limits, ternary eutectic point	1	10/1 ³
	ZrO ₂ - FeO - SiO ₂		ternary eutectic point	2	2/0
	ZrO ₂ - FeO - CaO		ternary eutectic point	2	2/0
4	Eutectic composition measurement of a realistic complex corium mixture	Argon or Air	System (atmosphere) proposed by: - French partners (1 system) - German partners (1 system) - Russian partners (1 system)	2	3/0
	Notes: 1-LPH (Zr-O),	2- HTM, 3-	VPA IMCC, 4- VPA in Galahov	microfurr	ace
	Notes: 1-LPH (Zr-O), 18 th CEG-SAN	2- HTM, 3- I meeting, St.	• VPA IMCC, 4- VPA in Galahov Petersburg, Russia, September 28-30, 201	microfurr 0	ace

Scope of work in quarters 8-9

- ✓ Experiments in the UO₂-CaO, UO₂-FeO-CaO, UO₂-FeO-SiO₂ systems have been conducted. Post-test analysis of samples is in progress
- ✓IVT RAN setup with laser heating has been additionally equipped with 300 mW diode laser for specimen lighting
- ✓IVT RAN setup with laser heating has been used for the verification experiments on previously studied Zr-O and ZrO₂-FeO systems
- Construction work necessary for getting a license on uranium handling has been completed. The license is expected to be issued in December 2010; after that the U-Zr-Fe-O studies will be started

Scope of work in quarters 8-9 (2)

System	Test	Objective	Status
UO ₂ -CaO	PRS 11,12	Determination of the liquidus temperature. Determination of the components final solubility in the formed solid solutions	Tests done
UO ₂ -FeO- SiO ₂	GPRS 33-36 PRS13	T _{liq} , T _{sol} , solubility limits, tie-lines in the miscibility gap, ternary eutectic point	Post test analysis in progress
UO ₂ -FeO- CaO	PRS14	T _{liq} determination by VPA IMCC. Determination of eutectic composition	

UO₂ - CaO system: PRS 11 test results

Experimental objectives

T_{lig} determination

Determination of the components final solubility in the formed solid solutions

Charge composition

mol.% 30UO₂ + 70CaO

✓ From 4829 s, the pool was pulled out from inductor at 8.5 mm/h for 2.4 hours. This has ensured close to equilibrium crystallization and the eutectic liquid displacement into the ingot upper part

✓T_{lig} was measured 3 times by VPA IMCC with melt sampling

18th CEG-SAM meeting, St. Petersburg, Russia, September 28-30, 2010

11

Test results on the UO₂ - CaO system

- Compositions of the final solid solutions and the eutectics will be refined after SEM/EDX has been performed for PRS12
- ✓ The posttest analysis of samples from the corium ingot from VULCANO VP-U1, an ECOSTAR test, has detected CaO solubility in UO₂ (aproximately 47.9 мол.%) in one of the samples

UO₂ – FeO – SiO₂ system: PRS 13 test results

Experimental objectives

- T_{lig} determination by VPA IMCC.
- Determination of the ternary eutectic composition

Charge composition

mol.% 30.00 UO₂ + 46.67 FeO +23.33 SiO₂

From 3276 s, the pool was pulled out from inductor at 9 mm/h for 3.6 hours. This has ensured close to equilibrium crystallization and the eutectic liquid displacement into the ingot upper part

 $\sqrt{T_{lig}}$ was measured 4 times by VPA IMCC and accompanied by melt sampling

UO₂-FeO-SiO₂ system: PRS 13 test results (2)

VPA IMCC: Example of thermogram 1 from the test showing melt surface

✓ Results of T_{liq} measurements: 2055, 2083, 2092, 2079°C

UO₂-FeO-SiO₂ system: PRS 13 test results (3)

Chemical analysis of melt samples

Samples		mass %			T _{liq} ,°C		
	UO ₂	FeO	SiO ₂	UO ₂	FeO	SiO ₂	
1	55.63	30.71	13.66	23.93	49.65	26.42	2055±30
2	55.97	30.76	13.27	24.20	50.00	25.80	2083±30
3	55.22	31.07	13.70	23.64	50.00	26.36	2092±30
4	55.38	31.08	13.54	23.76	50.13	26.11	2080±30
Charge composition	63.01	26.08	10.91	30.00	46.67	23.33	

In progress:

- SEM/EDX analysis of melt samples;
- chemical analysis of other fused products (ingot, crusts, dry spillages and aerosols) for composing the elemental material balance

✓ UO₂ of >99.0 % purity, SiO₂ of 99.99% purity, charge mass – 150 mg, molybdenum crucibles Ø 6 mm

UO₂-FeO-SiO₂ system:GPRS #33-36 test results(6)

SEM/EDX GPRS 33

261							
0	-			145	-		
-	n	n	П	ITI	\mathbf{n}	n	c.
-	U		u	ILI	U		υ.

- Charge composition, mol%
- ✓ 5UO₂ + 25FeO +70SiO₂

isothermal exposure at 1100°C for 1 h., heating up to 2100°C, 5-min. exposure, quenching

	AH BERNING
A A	SO
.P2	D1
- 04	P1
- M - <i>R</i> -	P2
- A - 11	

25 mm

	#	UO ₂	FeO	SiO ₂
Q1	mass.%	15.8	21.7	62.5
	mol.%	4.2	21.6	74.3
D1	mass.%	73.6	14.9	11.5
	mol.%	40.6	30.8	28.6
P2	mass.%	18.5	19.9	61.7
	mol.%	5.1	20.2	74.7
D2	mass.%	4.9	15.7	79.5
гэ	mol.%	1.2	14.1	84.7

0.92 μm

No macrostratification was found in the oxidic part of the polished section
Microstructure resembling that of the 'heavy' liquid in the UO₂-SiO₂ system.
As a result of the interaction between the melt and the crucible, the composition got depleted in Fe, but no molybdenum was found in the oxidic part

UO₂-FeO-SiO₂ system:GPRS #33-36 test results(8) >SEM/EDX GPRS 35

6.67 µm

Conditions:

Charge composition, mol% 20 UO₂ + 7 FeO +73 SiO₂ Isothermal exposure at 1100°C for 1 h., heating up to 1850°C, 5-min. exposure, quenching

✓ Though the macrostructure is uniform, the microstructure is extremely inhomogeneous and resembles that in UO₂-SiO₂ near the binodal

a set of the other of the set of the set	A COLUMN AND A	A PARTY OF THE OWNER	Contraction of the second	Tre- martine	A NUMBER OF THE PARTY OF THE PARTY OF THE PARTY OF
#		UO ₂	FeO	SiO ₂	Composition
SQ1	mass.%	14.7	3.9	81.4	Light matrix
	mol.%	3.7	3.7	92.6	Light matrix
SQ2	mass.%	26.6	5.8	67.6	Bulk composition
	mol.%	7.6	6.2	86.3	of the total
	100	314141 302	17 F=1 333		microstructure
SQ3	mass.%	46.3	11.7	42.0	Globules in the
	mol.%	16.6	15.8	67.6	light matrix

144 µm

with CrK α_1 radiation ($\lambda = 0.22897$ nm)

	A Fayalite	B Uranium oxide	C Iron
Formula	Fe ₂ SiO ₄	UO ₂	Fe
Card number	71-1667	73-1715	87-722
Phases qualitative ratio	0.052217	0.83252	0.115263

UO₂-FeO-SiO₂ system:GPRS #33-36 test results(10) >SEM/EDX GPRS 36

144 um

Conditions:

- Charge composition, mol% 1.7 UO₂ + 32.8 FeO +65.5 SiO₂
- Isothermal exposure at 1100°C for 1 h., heating up to 1300°C, 20-min. exposure, chilling from 1300 down to 900°C for 240 min.

	#	UO ₂	FeO	SiO ₂	
SON	mass.%	5.3	55.2	39.5	
3Q2	mol.%	1.4	53.1	45.5	Ternary
SQ3	mass.%	5.9	53.6	40.5	eutectics
	mol.%	1.5	51.8	46.7	

 Microstructure in the lower part of the crucible shows the eutectic crystallization. In terms of composition, this eutectics lies within a specific triangle UO₂-Fe₂SiO₄-SiO₂.

- Composition of the 'light' liquid with globules in GPRS 34 (T~Tq~1850C)
 - Composition of the light matrix in GPRS 34 $(T \sim Tm)^{\Delta}$
- Composition of globules in the light matrix in GPRS 35 (T is presumably around Tm)
- Ternary eutectics composition in GPRS 36 Solid phase composition in GPRS 36

UO₂-FeO-SiO₂ system: test results (12)

- ✓ The performed tests confirm the existence of a miscibility gap in a fairly narrow region adjacent to the diagram corner on the SiO₂ side
- ✓ The ternary eutectics has been determined within a particular triangle of the UO₂ - Fe₂SiO₄ - SiO₂ ternary system
- ✓ The PRS13 test has been performed for determining composition of the second ternary eutectics within a particular triangle of the UO₂ - Fe₂SiO₄ - FeO ternary system. The ingot analysis is underway

T_{liq}, was measured by VPA IMCC 3 times; video record of one measurement could not be deciphered. Samples were taken 3 times

UO₂ – FeO – CaO system: PRS 14 test results (2)

>VPA IMCC: Example of thermogram #2 showing melt surface

UO₂ – FeO – CaO system: PRS 14 test results (3)

>XRF and Chemical analysis of melt samples

Samples	XRF			Cha			I _{liq} °C
	UO ₂	FeO	CaO	UO ₂	FeO	CaO*	
2	<u>19.27</u> 5.71	<u>66.52</u> 74.03	<u>14.22</u> 20.27	<u>16.74</u> 4.83	<u>66.90</u> 72.47	<u>16.36</u> 22.70	1238±20
3	<u>19.32</u> 5.73	<u>66.74</u> 74.38	13.94 19.90	<u>18.08</u> 5.26	<u>65.01</u> 71.06	<u>16.91</u> 23.68	1247±20
Charge compo- sition	<u>20.10</u> 6.00	<u>66.70</u> 75.00	<u>13.20</u> 19.00				

* - determined from residue

- The results of corium samples XRF and chemical analysis were found to differ significantly
- XRF results are believed to be more accurate, since the content of CaO was not determined by chemical analysis, but calculated from the residue
 In progress:
 - the SEM/EDX analysis of melt samples

UO₂ – FeO – CaO system: PRS 14 test results (5)

 ✓ VPA IMCC is used to determine liquidus temperature of composition, mass%: 19.3±1.0 UO₂ + 66.6±3.3 FeO + 14.1±0.7 CaO – T_{liq} = 1242±20 °C

✓ EDX method is used to determine the ternary eutectic composition, mass%:
10.4±0.1 UO2 + 61.9±0.5 FeO + 27.7±0.5 CaO

Joint publication with collaborators within the reported quarters

Almjashev V.I., Barrachin M., Bechta S.V., Bottomley D., Defoort F., Fischer M., Gusarov V.V., Hellmann S., Khabensky V.B., Krushinov E.V., Lopukh D.B., Mezentseva L.P., Miassoedov A., Petrov Yu.B., Vitol S.A.

Phase equilibria in the FeO_{1+x} - UO_2 - ZrO_2 system in the FeO_{1+x} -enriched domain // JNM. 2010. V. 400. N. 2. P. 119–126

3rd PRECOS project meeting

(June 2, 2010, St. Petersburg)

Objectives:

Discuss test results related to binary and ternary oxidic systems:

UO₂-SiO₂; UO₂-CaO; ZrO₂-FeO_v

UO₂-FeO-SiO₂; UO₂-FeO-CaO

Discuss and agree upon future works

Discuss possible reasons of discrepancies between XRF, Chemical and EDX analyses of UO₂-SiO₂ and UO₂-CaO samples

Publications

To discuss PRECOS project prolongation without additional funding

3rd project meeting decisions about further work

- Conduct 1 experiment in the UO₂-SiO₂ system by LPH method
- Cancel the studies of eutectic points in the ZrO₂–FeO–SiO₂, ZrO₂–FeO–CaO systems for a more detailed study of priority system
- Check melt pollution by the crucible material in the GPRS experiments in the UO₂-FeO-SiO₂ system, to determine a possibility of studies in the Mo crucibles and discuss it with collaborators

Concluding remarks

- ✓ Experimental studies in the UO₂-CaO system have been completed
- ✓ Study of the UO₂-CaO-FeO ternary system have been started
- ✓ Plans for quarters # 10 11:
- Complete the UO₂-CaO systems and start a report preparation

- Continue study of the ZrO_2 -FeO_y; UO_2 -SiO₂-FeO; CaO-UO₂-FeO and U-Zr-O systems (the last one by LPH in IVT RAN)