FSUE SRI SIA "LUCH" IBRAE RAS FSUE EDO "GIDROPRESS"

ISTC

Experimental results of complex starting-up and adjustment actions on preparation of the PARAMETER-SF2 Experiment (Status of Project # 3194)

Presented by W. Nalivaev

CEG – SAM, 11th Meeting Dresden, 7 -9 March 2007

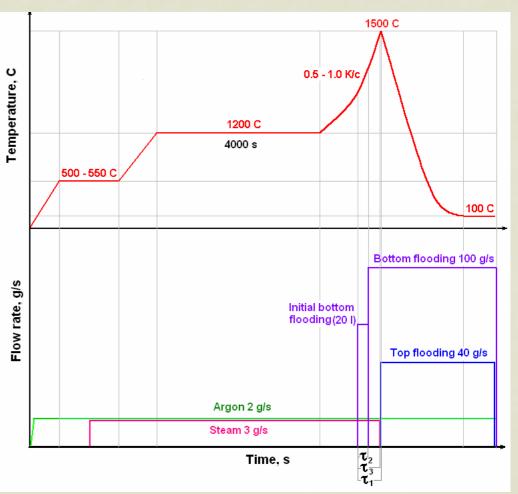
The Structure of Project

- 1. Financial support I S T C
- 2. The basic participants: FSUE SRI SIA "LUCH" IBRAE RAS FSUE EDO "GIDROPRESS"
- 3. Another participants: A.A. Bochvar FSUE VNIINM, A. I. Leipunsky SSC RF-IPPE, RSC "Kurchatov Institute"
- 4. Foreign collaborators: FZK, GRS, EdF, IRSN

Main Tasks of the PARAMETER-SF2 Experiment

Study of the conditions of cooling of the test bundle under combined top and bottom flooding;

Experimental trial of the system and method of the combined top and bottom flooding;


Adjustment of the method for steam-water balance control under top and bottom flooding.

The PARAMETER-SF2 experiment

Main parameters of experiment

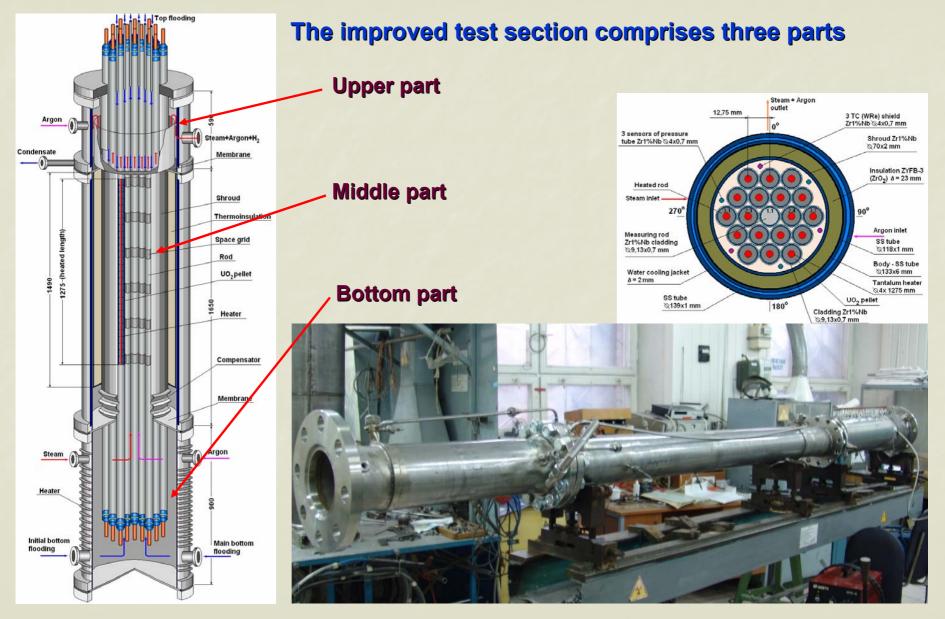
Sequence diagram of experiment

Coolant	Steam/ argon
Flow rate of coolant, g/s	3/2
Temperature of coolant, C	~500
Heating rate of cladding, K/s	0.3
Temperature of cladding at the pre-oxidation phase, C	1200
Duration of the pre- oxidation phase, s	4000
Maximal temperature of cladding, C	1500
Quenching phase	Top and bottom flooding
Flow rate of flooding, g/s: - top - bottom	~ 40 ~ 40

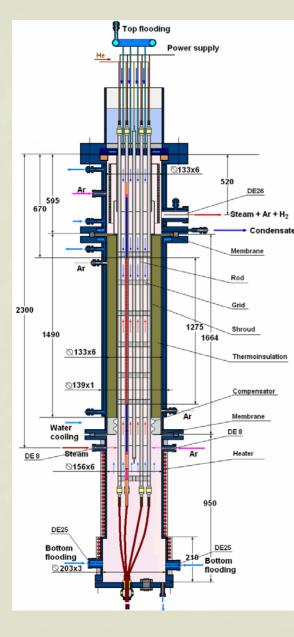
Some results of the PARAMETER-SF1 Experiment

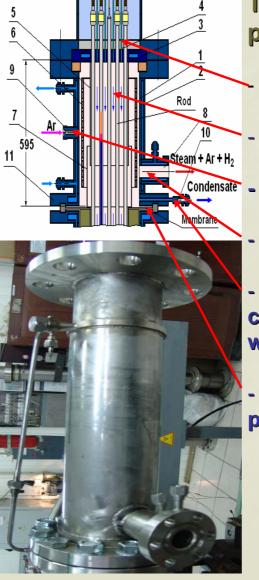
The cooling of the 19-fuel element assembly from the temperature of \sim 2270 K by top flooding with the flow rate of 2 g/s per fuel element:

1. Cooling of the upper elements of the assembly (Z=1250 - 1500 mm) in 3-5 seconds down to the temperature of ~ 400 K and to ~ 330 K in ~ 150 seconds.


2. Cooling of the lower part of the assembly (Z=0 - 600 mm) in 400-600 s (to the temperature of ~ 370 K) by the cooling front propagation upward with the rate of ~ 10 degrees/s.

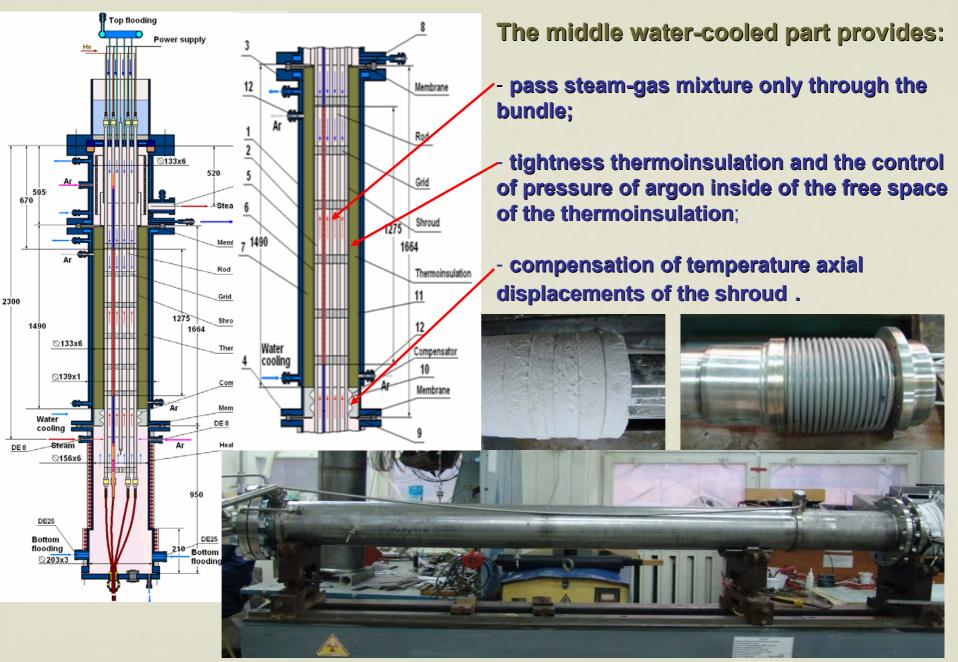
Difficult character of movement of cooling front of test bundle at a top flooding is caused by infringement of geometry of test bundle and blocking of through passage section of bundle by the formed zones of fusion;

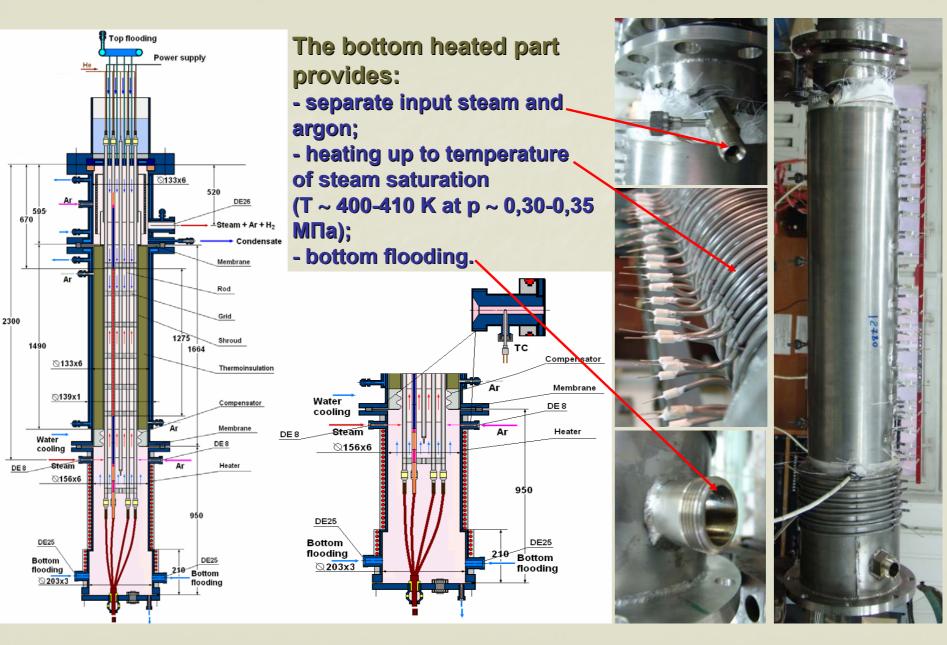

Process of degradation of constructional elements of bundle happened in experiment and absence of zones of destruction (debris) pellets are caused by presence of a skeleton of heaters of rods.


Modernization of technological systems of the PARAMETER facility

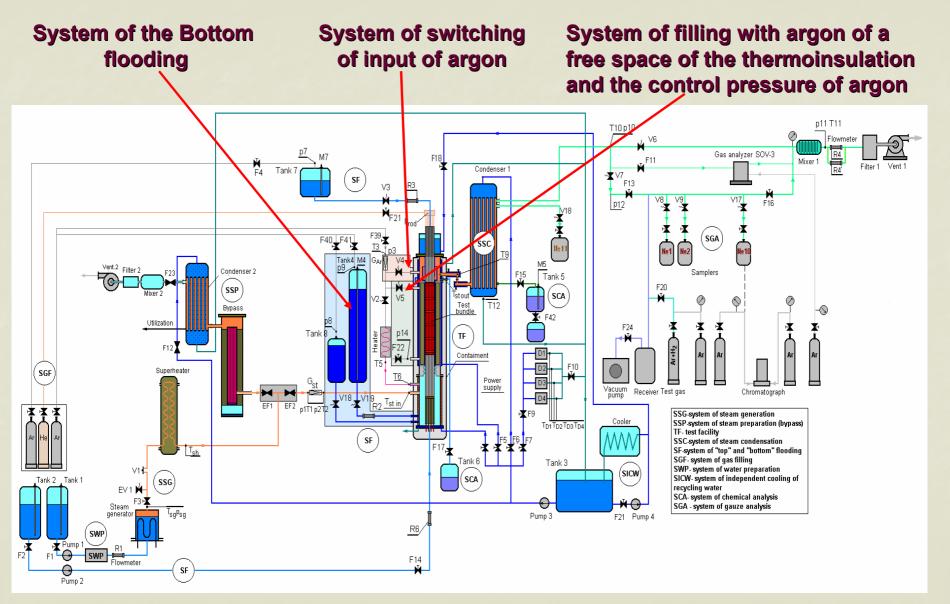
1. Test section

1.1. Upper part



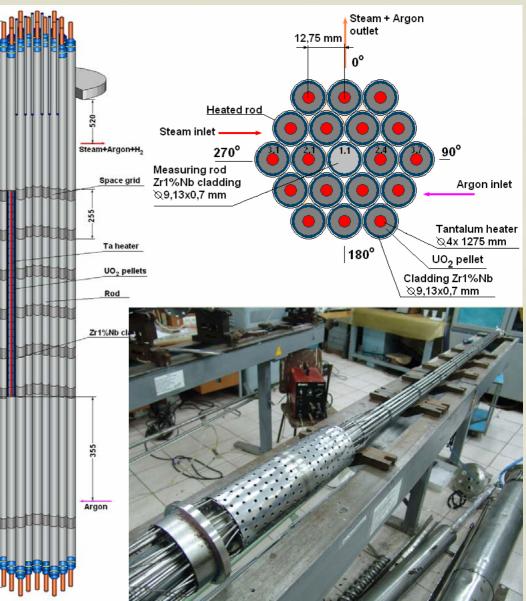

The upper water-cooled part provides:

- input rods and TC;
- top flooding;
- Condensate input of argon at quenching phase;
 - output steam-gas mixture;
 - gathering of a condensate and the control of volume of emission of water of the top flooding;
 - tight division of the top and middle parts.


1.2. Middle part

1.3. Bottom part

2. PARAMETER Facility Additional technological systems:


Test Bundle

The main technical characteristics **General view** Type **VVER-1000** Number of rods 19 - heated 18 - unheated Rods Ø 9,13/7,73 - cladding, mm 670 Steam+Argon+H, (Zr1%Nb) - pellets UO₂ Space grid - heater Ø 4/1275 (Ta) triangle **Grid type** Ta heater - grid pitch, mm 12.75 UO₂ pellets 1275 Heated length 3120 Rod Zr1%Nb Spacing grid - height, mm 20 Zr1%Nb cl - spacing, mm 255 Shroud Zr1%Nb - thickness, mm 2 - diameter/height, mm 70/1490 355-**Thermoinsulation** ZrO₂ ZYFB-3

Steam

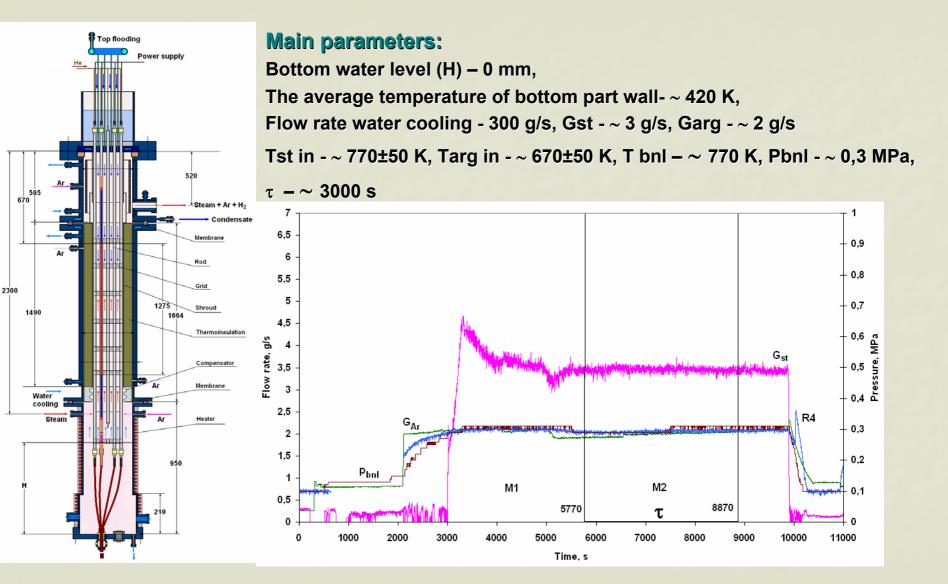
- thickness, mm
- diameter/height, mm 116/1490

23

Comparison of geometrical parameters of the PARAMETER-SF2 bundle with QUENCH-06 bundle

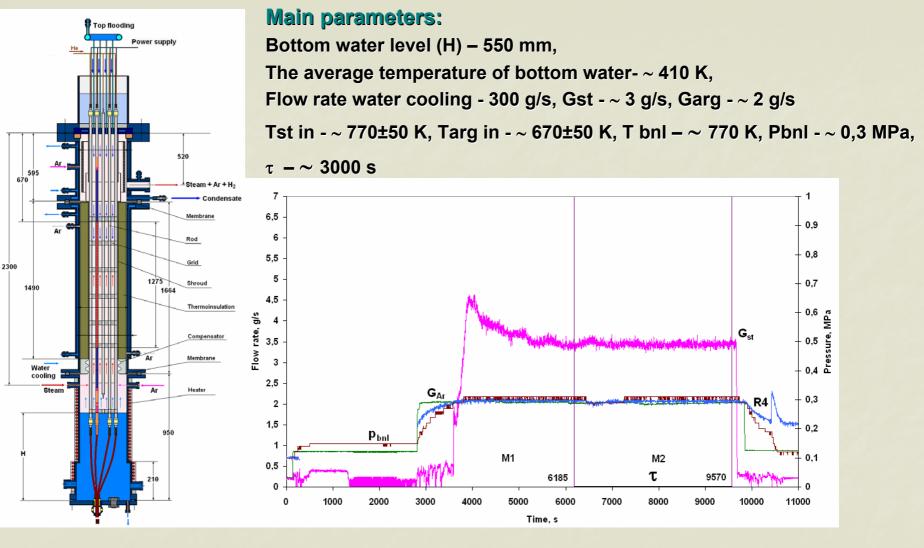
- 1) Coolant channel area relationship SF2/Q06 ≈ 0,686
- 2) Metallic surface relationship SF2/Q06 ≈ 1,03
- 3) Heated metallic surface relationship SF2/Q06 ≈ 0,95
- 4) Bundle material mass relationship SF2/Q06 ≈ 0,96

Test instrumentation

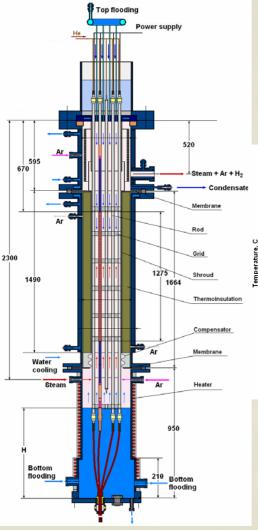

Ζ,	Rods																					
mm	1.1	2.1	2.2	2.3	2.4	2.5	2.6	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	3.10	3.11	3.12	Tsh	Tth	Tst
1475		TChA				TChA										PS						
1400				TChA																		
1300								TChA				TChA		TChA						TWRe	TChA	
1285	TWRe		TWRe																			TWRe
1250				TWRe		PtRh	TChA		TWRe		PtRh		PS					TChA				
1100	TWRe	TWRe			TChA					TChA							TWRe		TWRe	TWRe	TChA	
1030	TWRe						TWRe															TWRe
900													TWR	•	rwRe			PS		TWRe	TChA	
800																						
775	TWRe				TWRe																	TWRe
700			TChA													TChA				TWRe	TChA	
600														TChA								
500				TChA														TChA				
400								TChA								TChA						
300						TChA							TChA									
200		TChA										TChA		PS								
100			TChA														TChA					
50				TChA																		
0							TChA															
- 50									TChA													
- 150						TChA			PS													
- 300					TChA																	
	TChA																					
	TChA																					
- 600	TChA																					

TC ChAl - 31, TC WRe - 14, TC PtRh - 2 Tsh - 4, Tth - 4, Tst - 3, PS (pressure sensor) - 5

Experimental results of complex starting-up and adjustment actions The main starting-up and adjustment actions


- 1. Definition of parameters of system of the top flooding;
- 2. Definition of parameters of system of the bottom flooding;
- 3. Working off of system of steam generation and definition
- of hydraulic characteristics of a steam-gas path;
- 4. Working off of the control of balance of water;
- 5. Control Test at Tbnl ~ 770 870 K.

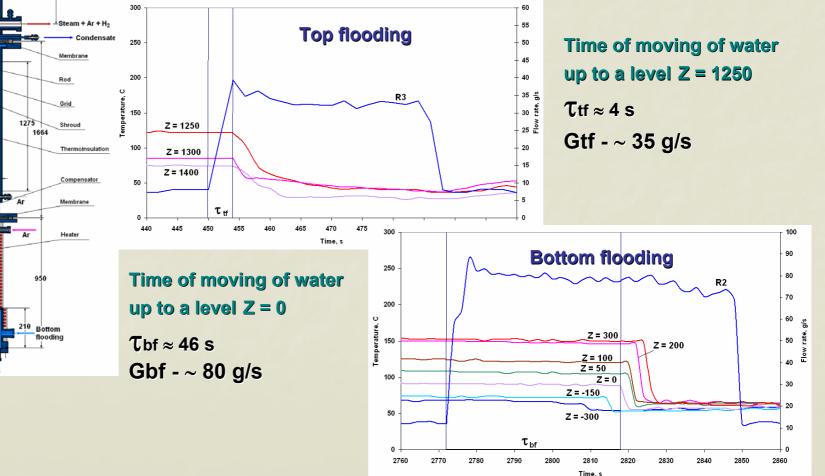
1. Working off of systems of steam generation


Inlet steam flow rate – 3,45 g/s M1 = 4647 g, M2 = 10800 g, $G_{sto\tau} = 3,45o3100 = 10695 g$

2. Working off of the control of balance of water

Inlet steam flow rate – 3,44 g/s, M1 = 9142 g, M2(τ =3385 s) = 13575 g, M5* = 1002 g (при сбросе давления), loss of water in the bottom of test section – 3142 g Gst bnl = M2/ $\tau \approx$ 4,01 g/s, Δ Gst \approx (3142-1002)/3385 = 0,61 g/s

3. Definition of parameters of systems of top and bottom flooding


Main parameters:

Bottom water level (H) – 550 mm,

The average temperature of bottom water- ~ 410 K,

Flow rate water cooling - 300 g/s, Garg - \sim 2 g/s, T bnl – \sim 370 K, Pbnl - \sim 0,3

MPa, $\tau - \sim 3000$ s, Gtf - ~ 40 g/s, Gbf - ~ 100 g/s

Conclusion

All systems of the PARAMETER facility are prepared for carrying out of test PARAMETER-SF2 planned in March, 2007