

A.P. Alexandrov Research Institute of Technology

Progress report on the ISTC project #3813: Phase relation in corium systems (PRECOS)

Presented by S. Bechta 17th CEG-SAM meeting Madrid, Spain March 29-31, 2010

- General information
- Project objectives
- PRECOS test matrix
- Scope of work in quarters 6 7
- > Test results:
 - UO₂-SiO₂ system
 - UO₂-CaO system
 - UO₂-SiO₂- FeO system
- Conclusions

PRECOS project general information

Project participants and coordination

17th CEG-SAM meeting, Madrid, Spain, March 29-31, 2010

Project objectives

- **Experimental determination of:**
- > liquidus solidus temperatures
- > coordinates of reference points (eutectics, etc.)
- Solubility limits of solid solutions
- Compositions of liquids coexisting in the miscibility gap

PRECOS test matrix

Task	Composition	Atmosphere	Experimental data	Priority level	Pt N
1	Different compositions in the U-Zr-Fe-O system	Argon	Selected points (liquidus, solidus, tie-lines in the miscibility gap)	1	6
2	ZrO ₂ - FeO _y	Air and po2 control	liquidus, solidus, solubility limits	2	3
3 UO ₂ UO ₂ ZrO ₂ ZrO ₂	UO ₂ - SiO ₂		liquidus, solidus, solubility limits,	1	7
	CaO - UO ₂	Neutral	eutectic point	1	7
	UO ₂ – FeO – SiO ₂		liquidus, solidus, solubility limits, tie-lines in the miscibility gap, ternary eutectic point	1	10
	UO ₂ – FeO – CaO		liquidus, solidus, solubility limits, ternary eutectic point	1	10
	ZrO ₂ - FeO - SiO ₂		ternary eutectic point	2	2
	ZrO ₂ - FeO - CaO		ternary eutectic point	2	2
4	Eutectic composition measurement of a realistic complex corium mixture	Argon or AirSystem (atmosphere) proposed by - French partners (1 system) - German partners (1 system) - Russian partners (1 system)		2	3

Scope of work in quarters 6-7

- The laser pulse heating (LPH) experimental installation at IVTAN is equipped with a system of high-speed video recording of the specimen surface at 1000 frames/s
- A new system of semi-transparent ceramics heating by the Nd:YAG laser has been designed and realized for the above installation
- ISC experimental installations have been transferred to SPb SETU and assembled there. Their commissioning and adjustment are underway. The electron microscope is equipped with the BRUKER QUNTAX-200 microanalyzer. The company has solved the softwareand hardware-related problems of quantitative analysis
- ✓ Experiments on the following systems have been performed:

 UO_2 -SiO₂, UO_2 -CaO, UO_2 -SiO₂-FeO

✓ Experiments on the ZrO₂-FeO_y system are delayed due to the transfer of the experimental installations from ISC to SETU, and those on the ZrO₂- U system – because IVTAN has not got yet a License to work with uranium

Scope of work in quarters 6-7 (2)

System	Test	Objective	Status
UO ₂ -SiO ₂	PRS 9 GPRS 19- 28,32	Determination of T _{liq} and MG critical point	
UO2-CaO	PRS 10 LPH 2	Determination of: -T _{liq} and T _{sol} - final solubility - CaO melting point	Tests done Post test analysis in progress
ZrO ₂ -FeO- SiO ₂	GPRS 33-36	T _{liq} , T _{sol} , solubility limits, tie-lines in the miscibility gap, ternary eutectic point	

UO₂-SiO₂ system: PRS9 test results

 $36 \ge$

³² ⊃́

28 .

16 o

kW; I,

>Experimental objectives PRS9 l _{mel} **Determination of the liquidus** temperature ပ္စ Charge composition Femperature, Q_{cr} Mol% 75UO₂ + 25SiO₂ PRS9 I mel 800 1000 1200 1400 1800 2000 2200 2400 2600 2800 Time, s Tlig ✓ T_{lig} was measured 3 times by **VPA IMCC** with melt sampling Samples Time. s

UO₂-SiO₂ system: PRS9 test results(2)

VPA IMCC: Example of thermogram # 3 from the test showing melt surface images

✓ Results of T_{liq} measurements: 2560°C, 2563 and 2550°C ⇒ T_{liq}=2558±40°C

17th CEG-SAM meeting, Madrid, Spain, March 29-31, 2010

UO₂-SiO₂ system: GPRS 19-28,32 test results

Experimental objectives

- Determination of the critical point of MG cupola
- Determination of the liquidus point by the lever rule
- > Annealing, melting and quenching in the Galakhov microfurnace

Test	UO ₂ content, mol%	Quenching T,°C	Exposure time, min
GPRS19	70		
GPRS20 60 GPRS21 50		- 2200	
GPRS22	40		
GPRS23	70	2200	
GPRS24	60	2300	10
GPRS25	19	2175	
GPRS26	50	2300	
GPRS27	19	2160	
GPRS28	40	2300	
GPRS32	19	2130	

 \checkmark UO₂ of >99.0 % purity, SiO₂ of 99.99% purity, charge mass – 150 mg

✓ SEM/EDX in progress but some results are already available

Liquidus experiments (GPRS 19-22)

10 min. exposure, quenching, T= 2200°C

GPRS22

GPRS20

GPRS19

60 mol.% SiO₂ by synthesis

50 mol.% SiO₂ by synthesis

40 mol.% SiO₂ by synthesis

30 mol.% SiO₂ by synthesis

Liquid phase composition measurements

60.5 mol.% SiO₂ 66.3 mol.% SiO₂ 64.4 mol.% SiO₂

61.4 mol.% SiO₂

✓ A solid relict phase has been registered at the 2200°C isotherm in all samples

UO₂ - CaO system: PRS 10 test results

>Experimental objectives

- **Determination of the liquidus temperature**
- Determination of the components final solubility in the formed solid solutions

Charge composition

Mol% 36.2UO₂ + 63.8CaO

✓ From 4000 s, the pool was pulled out from inductor at 8.5 mm/h for 2 hours. This has ensured close to equilibrium crystallization and the eutectic liquid displacement into the ingot upper part

✓T_{lig} was measured 2 times by VPA IMCC with melt sampling

UO₂ - CaO system: PRS 10 test results (2)

VPA IMCC: Example of thermogram # 2 from the test showing melt surface

UO₂ - CaO system: PRS 10 test results (5)

>SEM/EDX analysis of the ingot (eutectic zone)

✓The eutectic composition has been determined by EDX in the eutectic crystallization zone without solid solutions

17th CEG-SAM meeting, Madrid, Spain, March 29-31, 2010

CaO Melting Point Measured by LPH in IVTAN

Experimental Thermogram LPH2

✓ Supposing that ϵ =0.85-0.9→T_{melt}= 3160 ± 30K

✓ε for CaO is to be refined later

Peculiarities of CaO:

- Low absorption coefficient below 1500-2000K
- Boiling temperature of approximately 3300K, which is close to melting temperature

-Specimens melting procedure:

- Preliminary heating up to 1750K
 Controlled heating with a profiled laser pulse
- Coupling temperature measurement with a high-speed spectropyrometer
- Melt surface temperature fields registration with a high-speed camera
- Thermograms mathematical processing

Test results on UO₂ - CaO system

✓ T_{liq} was determined in PRS10 test. The temperature of CaO melting was refined in LPH2 test SEM/EDX was used for determining compositions of the eutectics and the saturated solid solution

✓ In future, it is planned to measure T_{liq} for the UO₂-rich compositions and perform a test with the eutectic composition for measuring the eutectic temperature and check of CaUO₃ and Ca₂UO₄ compounds

UO₂-SiO₂-FeO system:GPRS #33-36 test results

>Experimental objectives

- Determination of the liquidus temperature
- Determination of the ternary eutectic point

Annealing, melting and quenching in the Galakhov microfurnace (estimation of ternary eutectic position)

Test	Content, mol.%		Tempera	Exposure	Note		
	UO ₂	SiO ₂	FeO	ture, °C	time, min		
GPRS33	5.0	70.0	25.0	1100	60	Annealing	
				2100	5	Melting and quenching	
GPRS34	10.0	80.0	10.0	1100	60	Annealing	
				1850	5	Melting and quenching	
GPRS35	20.0	73.0	7.0	1100	60	Annealing	
				1950	5	Melting and quenching	
GPRS36	1.7	65.5	32.8	1100	60	Annealing	
				1300	20	Melting	
				1300-900	240	Cooling at 100°C/h	

 \checkmark UO₂ of >99.0 % purity, SiO₂ of 99.99% purity, charge mass – 150 mg

✓ Posttest analysis of the tests are underway

17th CEG-SAM meeting, Madrid, Spain, March 29-31, 2010

Joint publications with collaborators

>V.I. Almjashev, M. Barrachin, S.V. Bechta, D. Bottomley, F. Defoort, M. Fischer, V.V. Gusarov, S. Hellmann, V.B. Khabensky, E.V. Krushinov, D.B. Lopukh, L.P. Mezentseva, A. Miassoedov, Yu.B. Petrov, S.A. Vitol. Eutectic crystallization in the $FeO_{1,5}$ -UO_{2+x}-ZrO₂ system // Journal of Nuclear Materials, 389, p. 52-56 (2009).

S. Bakardjieva, M. Barrachin, S. Bechta, D. Bottomley, L. Brissoneau, B. Cheynet, E. Fischer, C. Journeau, M. Kiselova, L. Mezentseva, P. Piluso, T. Wiss. Improvement of the European thermodynamic database NUCLEA // Journal of Progress in Nuclear Energy, 52, p. 84-96 (2010).

>V.I. Almjashev, M. Barrachin, S.V. Bechta, D. Bottomley, F. Defoort, M.Fischer, V.V. Gusarov, S. Hellmann, V.B. Khabensky, E.V. Krushinov, D.B.Lopukh, L.P. Mezentseva, A. Miassoedov, Yu.B. Petrov, S.A. Vitol. Phase equilibria in the FeO1+x –UO2 –ZrO2 system in the FeO1+x-enriched domain // Journal of Nuclear Materials (2010). Accepted Manuscript, doi: 10.1016/j.jnucmat.2010.02.020

Concluding remarks

- ✓ The temperature of CaO melting has been significantly refined for the CaO-UO₂ system
- ✓ With exception for ZrO₂-FeOy, other binary systems are studied in accordance with the Work Plan. The works are close to completion
- ✓ Study of the UO₂-SiO₂-FeO ternary system have been started
- ✓ Plans for quarters # 8 9:
- Complete the UO₂-SiO₂ and UO₂-CaO systems and start a paper preparation
- Continue study of the ZrO₂-FeO_y system
- Continue investigations of the UO₂-SiO₂-FeO system
- Start study of the CaO-UO₂- FeO system
- Continue study of the U-Zr-O system by LPH