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ABSTRACT 

 

The report presents the results of testing physicomathematical models that describe thermal 

hydraulics of the prototypic corium using experimental data from MC4 and MC5 tests 

performed on the Rasplav-2 and Rasplav-3 test facilities. 

Numerical modeling made it possible to determine structure of the 2D and 3D nonstationary 

flow of molten corium in the cold crucible, as well as the heat fluxes from the surfaces 

bounding the molten pool. The calculations used both direct modeling of turbulence of the free 

convective current, and the k-ω turbulence model. 
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Introduction 
Prediction of thermal loads on the water-cooled walls (confining structures) is of special 

importance for retaining corium either in the nuclear reactor vessel or in an external catcher of 

the crucible type. Under the quasistable conditions, heat flux density distribution at the molten 

pool boundaries is determined by regularities of the free-convective heat transfer, which 

depends on intensity and distribution of heat sources, as well as on the molten pool dimensions 

and conditions at its boundaries. As a rule, the movement of the melt under the actual 

conditions is turbulent. 

A series of software tools, including special-purpose ones, have been designed for applying to 

the above-mentioned conditions in order to model free-convective heat transfer. These tools 

have been verified to this or that extent, using tests with model liquids mostly, as up to now the 

majority of thermophysical properties of molten coriums and the type of boundary conditions 

in the solid-liquid area near the pool walls remain uncertain. These circumstances make the 

tests with prototypic corium especially valuable and offer better possibilities for the software 

tools verification. Experimental investigations of this very type are carried out in the 

framework of METCOR Project. 

The present work was aimed at preparing the available software tools for the numerical 

support to and analysis of results from the METCOR tests, improvement and verification of 

these tools using the obtained experimental data. The analysis was applied to the MC4 and 

MC5 tests. 
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1. Physicomathematical model 
1.1. Equations of motion, energy, continuity, and turbulence 

The 3D nonstationary motion and heat transfer in a molten pool are described by the equations 

of Navier-Stokes, continuity and energy [1]. 

In the Boussinesq approximation (taking buoyancy into account), the Navier-Stokes equation 

is written as [1]: 
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where t is time; x, y, z are Cartesian coordinates; T, V , ρ, p is temperature, velocity vector, 

density, and pressure; β is the coefficient of volumetric expansion; ρ0 is density at a 

temperature T0; µ is the coefficient of dynamic viscosity; g
r

 is the gravitational acceleration; F  

is the bulk force of non-gravitational origin; S&  is the strain rate tensor; u, v, w are the 

components of the velocity vector V  along x, y, z coordinates. 

Equation (1), supplemented by the continuity equation: 

0Vdiv = ,                                                                   (4) 

describes motion of an isothermal liquid. For a non-isothermal liquid in the case with the 

present melt, a closure of (1)÷(4) is required by the energy equation [1]: 

( )[ ] z)y,W(x,gradTTлdivT)(Vcс
t
Tсс +⋅=∇⋅+

∂
∂ ,                             (5) 

where c is heat capacity; λ is thermal conductivity; W is the power of volume heat release. 

The gravitational force ( )gTTвс 00 −  in equation (1) causes free-convective flow when the 

temperature gradient is directed along vector g  and the condition dρ/dT<0 is fulfilled. 

F  force in equation (1) and the volume heat source W in equation (5) possess electromagnetic 

nature under the conditions of METCOR tests; their distribution in the melt is given in Section 

1.3, and the calculation method is described in [2, 3]. 

The molten pool geometry in MC4 and MC5 is close to cylindrical, with a vertical symmetry 
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axis, and that is why in addition to the 3D model based on equations (1)÷(5) the present work 

considers a 2D axis symmetrical model in which the Navier-Stokes equation is written as: 
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where r is the radius; z is the height; u, v are the radial and vertical components of velocity; Fr, 

Fv are the bulk force radial and vertical components. Other parameters are designated as in (1). 

Equations (1)÷(5) describe both laminar and turbulent 3D flows. The same refers to the 2D 

equations (6)÷(9) with an only reservation that turbulence has a 3D nature, and its 2D 

description is a rough approximation, applicability of which to the given conditions is checked 

by experimental data, or by the results of verified 3D calculations. 

Analytical methods of solving the Navier-Stokes equation have been developed for a narrow 

circle of tasks and are inefficient in the present case. Therefore, calculations of the melt motion 

in the cold crucible require application of numerical methods which allow calculation of both 

laminar and turbulent flows. 

The dimensionless similarity criterion, which is usually used in the engineering practice for 

evaluating flow condition near a heated body, is the Rayleigh number: 

( )
**

3
s

2
*

лм
LTTcвgс

Ra ∞−
=  ,                                                  (10) 

Here Ts, T∞ are the maximum body temperature, and the minimum temperature in the 

surrounding liquid far zone; ρ*, µ*, λ* are density, dynamic viscosity and thermal conductivity 

at T* = 0.5⋅(Ts+T∞); L is the characteristic dimension of the system. 

The Rayleigh number (10) equals the Grashof number (Gr) by the Prandtl number: Ra=Gr⋅Pr. 
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The Prandtl number characterizes similarity of temperature and dynamic parameters of a flow: 

*

*

л
cмPr =  ,                                                         (11), 

while the Grashof number is determined by the relation of the lifting force ( )LTTвgс s0 ∞−  to 

the internal friction force (per unit area) мV/L, where V is the velocity scale, which for the 

free-convective flow may be given as м/сL , 
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2
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3
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2
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м
LTTвgс
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=  ,                                                  (12) 

Thus, the Grashof number is determined by relations between dynamic parameters only, while 

the Rayleigh number additionally includes the criterion of similarity of velocity and temperature 

characteristics (the latter also influence intensity of free convection). For example, when 

thermal conductivity of a liquid increases, thickness of the boundary layer near the heated body 

surface decreases, which means shrinking of a zone with nonequilibrium stratification and, 

consequently, a drop in the free convection intensity (the Rayleigh number decreases at that). 

According to [4], for an isothermally heated cylinder or a vertical plate free convection 

changes from laminar to turbulent within the 107<Ra<109 range. However, the criteria revealed 

in the ordinary hydrodynamic tests may be used for analyzing METCOR tests only 

approximately, as under the METCOR conditions heat release in the melt is non-uniform in the 

volume, and in some cases the role of Lorentz forces is significant. Besides, for a melt heated 

up to about 3000 K the role of radiation from the free surface is noticeable, and it is not taken 

into account in (10). 

Conditions of МС4 are similar to [4], because release of electromagnetic power occurs in MC4 

near the walls, while influence of the electromagnetic force is not big, if compared with the 

gravitational. As the Rayleigh number in МС4 is about 3⋅109 and this value corresponds to the 

transition to the turbulent flow [4], it may be supposed that the melt motion in МС4 is rather 

turbulent than laminar. Observations of the melt corroborate this supposition. A similar 

conclusion can be made for МС5. 

The tasks concerning internal heat release also employ the modified Rayleigh number, 

Ra*=Ra⋅Da, where Da is the Damkohler number: 
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Here, qv is the volume heat source. From (10) and (13) it follows that 
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Turbulence starts showing at Ra*>1010, and for both МС4 and МС5 this condition is 



 

 
Alexandrov RIT  ISTC PROJECT-833.2 METCOR 9 

observed, as 2⋅1010<Ra*<5⋅1010 under conditions of the ingots. Therefore, the models under 

development should describe turbulent motion of the melt. 

Specific conditions of the METCOR tests complicate selection of an adequate model of 

turbulence based on the RANS method (RANS – Raynolds-averaged Navier-Stokes). For 

instance, the well-known k-ε model contains adjustable parameters, numerical values of which 

have been determined for a relatively narrow circle of conditions. 

A search for, or development of a new RANS-class model of turbulence may be avoided 

thanks to direct numerical modeling of turbulence using the nonstationary equations of Navier-

Stokes. Such an approach requires the linear dimension of the computation cell to be below the 

Kolmogorov scale of turbulence, which characterizes the minimal size of the turbulent vortex. 

The Kolmogorov scale may be appreciated using the formula [5]: 

4
1

3

е
нз 








= ,                                                            (15) 

where ν is the kinematic viscosity coefficient; ε is the turbulent energy dissipation rate. It will 

be shown below (Section 3.1) that the value of η under the conditions of МС4 is within the 

0.17÷0.55 mm range, while in the greater part of the melt η is about 0.35 mm. This basically 

makes it possible to perform direct calculaations of a 2D or 3D turbulent flow of the melt in 

the cold crucible of Rasplav-2 and Rasplav-3 test facilities using a PC. 
Obviously, an advantage of direct modeling of turbulence is in obtaining local pulsation 

characteristics of the flow and of information about its spatial structure, but since calculaations 

of the nonstationary flow may require more time than required for calculating the stationary 

flow, it may be expedient to determine the possibility of computing a turbulent melt using the 

RANS models. In the RANS method, the Navier-Stokes equations are written as (1), (5) with 

the only difference that viscosity and thermal conductivity are substituted by effective 

coefficients: 

teff ммм += ,                                                         (16) 

teff ллл += ,                                                         (17) 

Here, µeff, λeff are coefficients of effective dynamic viscosity and effective thermal conductivity; 

µt, λt are coefficients of turbulent viscosity and turbulent thermal conductivity. 

The present work employs the k-ω turbulence model, in which the kinematic coefficient of 

turbulent viscosity νt is determined by the formula 

щ
kCн мt = ,   щkе = ,                                                      (18) 

where k is the turbulent kinetic energy; ω is the turbulent energy specific dissipation rate; ε is 

the turbulent energy dissipation rate; мC  is a constant. The turbulent Prandtl number for 



 

 
Alexandrov RIT  ISTC PROJECT-833.2 METCOR 10 

determining turbulent thermal conductivity was believed to be Prt = 0.9 (Pr t= сµt/λt , µt = ρνt). 

The k-ω turbulence model has been chosen because it seems to be more accurate [6] in 

describing transfer coefficients for the spatially complex convective flow than the standard k-ε 

turbulence model. 

According to the k-ω model [7], equations of turbulent kinetic energy transfer and of its 

dissipation rate are as follows: 
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where P is the source of the turbulent kinetic energy; ;30.83C
2щ

= ;090.Cм =  0.555;C
lщ

=  

2.0.уу щk ==  

It was stated above that the realization of RANS may be associated with problems concerning 

determination of an adequate model of turbulence. On the other hand, a decrease of the 

computational cell scale and hence, increase of the computational domain will make direct 

modeling of turbulence on a PC very labour-consuming due to a large number of cells in the 

computational grid. In such a case, the optimal solution would be to apply the LES (Large 

Eddy Simulation) method, which uses numerical analogs of the Navier-Stokes equations 

(1)÷(9) for solving problems concerning large vortex structures with a spatial scale exceeding 

linear size of a computational cell, and special algorithms – for determining local parameters of 

turbulence within each computational cell. This is an efficient method, as statistical 

characteristics of a smaller-area turbulence may be predicted better than those of a large-scale 

vortex structure. The LES method is not used in the present work for melt modeling, though 

its application is planned for the next stage. 

Thus, the present investigation included a direct numerical modeling of a turbulent flow under 

the conditions of MC4 and MC5 tests, using nonstationary 3D and 2D Navier-Stokes 

equations (1)÷(9). Also, the k-ω turbulence model was used for the 2D flow calcultions. 

The discrete analogs of differential equations have been constructed using the finite volumes 

method [8] using the rectangular mesh. Calculation of the velocity and pressure fields was 

done using the semi-implicit SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) 

method. The solution algorithm is realized in the DYMELT code. 
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1.2. Heat transfer properties of the melt 

At present, molten corium properties are known approximately; their significant part is 

accumulated in the MATRO library. When determining some heat transfer parameters we used 

data from the said library, as well as from the works [2, 9, 10]. These sources contain the most 

complete database for MC5 and a bit less comprehensive one for МС4. The missing 

parameters for МС4 were taken as analogs or from quantitative assessments. 

МС4 test: 

• Corium composition – 56.1% UO2 + 23.9%ZrO2 + 20.0%FeO 

• Heat capacity – с = 540 J/kg 

• Density at 2700 K – ρ0 = 7500 kg/m3 

• Volumetric expansion coefficient – β = 1.4⋅10-4 K-1 

• Thermal conductivity – λ = 2 W/m⋅K 

• Emissivity factor – ε = 0.8 

• Liquidus temperature – TL = 1910 °C, [2] 

• Solidus temperature – TS = 1400 °C (thermodynamic evaluation) 

• Fusion heat – 3⋅105  J/kg 

• Dynamic viscosity coefficient was calculated using formula [9]: 
2

0

max1

max75.0
1

















−
+=

fvs
fvs

fvs
fvs

µµ   ,                                          (22) 

where fvs – volume fraction of the solid phase which changes from 1 to 0 at the melt 

temperature shift from TS to TL; fvsmax = 0.635. We assumed µ0 to be equal to 0.0065 Pa⋅s; 

It is seen from (22) that µ → ∞ is effective at fvs → fvsmax. At fvs ≥ fvsmax , we assumed µ = 100 

Pa⋅s in the calculations. As the result, corium crust modeling became possible, because melt 

motion stopped in the zone with µ = 100 Pa⋅s due to strong friction. The mentioned procedure 

is of importance for performing the coordinated calculation, as preliminary determination of 

the melt crust boundaries, which is nonstationary under some regimes, becomes unnecessary. 

 

МС-5 test: 

• Corium – С-100 

• Liquidus/solidus temperature – TL/S =2550 °C 

• Heat capacity – с = 540 J/kg 

• Density at 2700 K – ρ0 = 7400 kg/m3 

• Volumetric expansion coefficient – β = 0.61⋅10-4 K-1 

• Emissivity factor – ε = 0.8 
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• Fusion heat – 3.2⋅105  J/kg 

• Tab. 1 contains data on thermal conductivity vs. temperature according to [10] at Т<TL/S. 

 

Table 1. Thermal conductivity vs. temperature 

T, K 300 1000 1500 2000 3000 

λ, W/(m⋅K) 7.7 3.01 2.15 2.00 2.8 

At Т>TL/S thermal conductivity λ is assumed to be equal 2.8 W/(m⋅K), which agrees with [10]. 

• The kinematic viscosity coefficient at Т > TL/S is given in Tab. 2, [10]. 

 

Table 2. Kinematic viscosity coefficient vs. temperature 

T, oC 2600 2650 2700 2750 2800 

ν⋅107, m2/s 9.49 8.83 7.37 7.66 6.83 

 

For calculating the melt crust at Т<TL/S, as well as for the МС4 regime, viscosity was assumed 

as µ = 100 Pa⋅s, or ν = 1.33⋅10-2 m2/s. 

 

1.3. Computational domain geometry in МС4, МС5. Electromagnetic sources of heat 
and forces. 
Power in the melt from induction heating and Lorentz forces are calculated separately from 

thermal hydrodynamics [2, 3] by means of software tools developed by the Department of 

Electrotechnological and Converter Equipment at the St.Petersburg Electrotechnical 

University (SPbGETU). A combined method of electromagnetic calculation has been applied, 

in which the exterior problem was solved using integral equations, while the inner problem (in 

the melt) was solved by means of the finite elements method. The obtained data on energy 

release and Lorentz forces served as the input data for calculating heat-and-mass transfer. 

Figs. 1, 2 offer induction furnace schematics in МС4 and МС5. In the framework of the 

present investigation, their main difference is in the elements that form the molten pool bottom. 

In МС4 it is a water-cooled three-section calorimeter and in МС5 it is the steel specimen upper 

surface. In both cases the crucible consists of 20 water-cooled copper tubes Ø 10 mm each. 

Diameter of the circle inscribed in the crucible horizontal section is 71 mm. In МС4, diameter 

of the bottom calorimeter central section was 30.5 mm, while inner and outer diameters of the 

middle section were 30.5 and 51.5 mm, respectively. 
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1.- bottom calorimeter; 2 – cold crucible; 3 – top quartz calorimeter; 4 – cover; 5 – inductor; 6 – crust; 7 – 

molten corium; 8 – quartz tube 
Fig. 1. Furnace schematics in МС4. 

 
 

1 – water-cooled pyrometer shaft; 2 – water-cooled cover; 3 – water-cooled electromagnetic screen; 4- quartz 
tube; 5 – crucible section; 6 – inductor; 7 – melt; 8 – acoustic defect; 9 – fused ZrO2 (fianite); 10 – ZrO2 
powder; 11 – vessel steel specimen; 12 – top specimen calorimeter; 13 – bottom specimen calorimeter; 14 –  
mullite wool insulation; 15 – ultrasonic sensor; 16 – K-type thermocouples; 17 – skull, 18 – electromagnetic 
screen (crucible sections are welded together); 19 – uncooled electromagnetic screen; 20 – cylindrical support 
of the specimen. 

Fig. 2. Furnace schematics in МС5 



 

 
Alexandrov RIT  ISTC PROJECT-833.2 METCOR 14 

 

The following experimental data were used for verifying the physicomathematical models: 

МС4 test: 
1. Temperature in the melt surface central zone, averaged for about a Ø 4 mm area; 

2. Heat flux from the melt free surface; 

3. Heat flux to the crucible; 

4. Heat fluxes to the bottom calorimeter central and middle sections; 

5. Crust thickness above the bottom calorimeter center; 

6. Video of the melt free surface central zone Ø 21 mm. 

 

МС5 test: 
1. Temperature in the melt surface central zone, averaged for about a Ø 4 mm area; 

2. Heat flux to the crucible; 

3. Crust thickness above the specimen center; 

4. Temperature distribution in the specimen 

5. Video of the melt free surface central zone Ø 21 mm. 

Figs 3 & 4 show the furnace and crucible from МС5, and Fig. 5 offers the molten pool 
diagram. 
 

                

 
Crust under the
  corium ingot

Top of the corium
         ingot

 

Fig. 3. Furnace after MC5 Fig. 4. Corium ingot in 

the cold crucible in MC5 
 

The space near the crucible walls is evidently 3D and lacks axial symmetry, but since the size 

of tubes is much smaller than the molten pool diameter, a geometry simplified to a Ø 71 mm 

cylinder (Fig. 6) was used for calculations. 
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Fig.5.  Diagram of the molten pool in the cold crucible 

 
 

 
Fig.6.  Molten pool geometry for calculations 

 

Besides, cylindrical geometry has been chosen for hydrodynamic calculations because 

electromagnetic sources of heat and Lorentz forces have been calculated especially for it [2, 3]. 

When setting the temperature boundary condition for the lateral crust in the simplified 

geometry (Fig. 6) it was taken into account that the internal surface area of a real crucible 1.45 

times exceeds the lateral surface area of a cylinder inscribed into the crucible. 

Figs. 7 ÷ 12 show distribution of volume heat sources and forces [2, 3]. It can be seen that 

though the volume heat sources are intercomparable, electromagnetic forces in MC5 are by an 

order of magnitude stronger than in MC4. In both cases, the radial component of the force is 

directed towards the axis, and the axial component – downwards. 
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Fig. 7. Distribution of volume heat sources in МС4, regime #1 

 
 

 
Fig. 8. Distribution of the radial bulk force in МС4, regime #1 

 
 

 
Fig. 9. Distribution of the axial bulk force in МС4, regime #1 
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Fig. 10. Distribution of volume heat sources in МС5, regime #1 

 

 
Fig. 11. Distribution of the radial bulk force МС5, regime #1 

 
 

 
Fig. 12. Distribution of the axial bulk force in МС5, regime #1 
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1.4. Boundary conditions 
Temperature. The choice of the boundary conditions type regarding temperature on 

the cold (water-cooled) walls of the structure, i.e., on the bottom calorimeter in MC4 and the 

crucible in both MC4 and MC5 was based on the provisions described below. The material of 

cold walls of the crucible and calorimeter does not chemically react with corium and therefore 

there are no factors to cause strong adhesion of the crust to the said metallic surfaces. Besides, 

the crust experiences nonuniform thermal stress and, hence, it is deformed. This, as well as the 

presence of powdered charge in the layer adjacent to the water-cooled surfaces, determines 

contact thermal resistance [11, 12], which leads to a big temperature gradient in the effective 

gap between the rough surface of the skull and metal (Fig. 13). 

Through this gap, heat is transported by both radiation and thermal conductivity, therefore we 

use a boundary condition for the heat flux density: 

( ) ( )W
4
W

4 TTбTTеу
n
Tл −+−=

∂
∂ ,                                         (23) 

where Tw is the wall temperature, T is the temperature of the corium crust outer surface, n is 

the wall normal, α is the effective heat transfer coefficient. 

 

 

 

 

 

 

Fig. 13. Diagram of the corium crust/water-cooled metallic surface contact zone 
 

In [6] there was noted the difficulty of determining boundary conditions at the corium crust 

outer surface in the crucible with cold walls, and a condition was proposed: 

( ) ( )Weff TTTH
n
Tл −⋅=

∂
∂ ,                                                    (24) 

where H(T) is an empirical, temperature-dependent heat transfer coefficient. It was not 

specified in [6]. Our notions agree with [6], as the comparison of (23) with (24) yields: 

( ) ( ) ( ) бTTTTеуTH 2
W

2
W ++⋅+=                                           (25) 

Condition (23) was analyzed during the calculations using different α values (Section 3.1.). 

In МС5, in addition to the considered loose contact of the crust with cold metal, a tight bond 

between the high-temperature specimen surface and corium crust realized from their chemical 

reaction. For this boundary, the calculations used the condition of the conjugated heat 

exchange: 

Metal 

Corium 

Gas 
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Corium
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Corium n

Tл
n
Tл

∂
∂

=
∂
∂                                              (26) 

A boundary condition of the second kind was set at the melt free surface for density of the 

radiation-determined heat flux. Taking into account the fact that the melt free surface and the 

surrounding surfaces form a closed optical system, and temperature of the latter (thanks to 

cooling) is low, the boundary condition is written as 

4
eff еуT

n
Tл =

∂
∂ ,                                                           (27) 

where λeff = λ + λt when the k-ω turbulence model is used, and λeff= λ at direct modeling the 

flow using the full system of Navier-Stokes equations. 

Dynamic characteristics. The condition of adhesion was set for the walls of the 

crucible, calorimeter and specimen. Under this condition, all components of corium velocity 

equal zero: 

u = v = w = 0.                                                    (28) 

The condition of k = 0 was set for the turbulent kinetic energy at the walls. Another condition 

was specified for the rate of dissipation (ω) in centers of the computational grid boundary cells: 

2
cy
н7.2щ=  ,                                                         (29) 

where yc is the distance along the wall normal from the computational cell center. 

The velocity component, perpendicular to the surface, equals zero at the melt free surface. The 

derivatives of the longitudinal velocity with respect to the normal to the melt free surface, as 

well as of the k and ω values, also equal zero, i.e., the melt glides along the surface without 

resistance of the outer gas medium. 

 

2. Test problem: flow in a cavern 
The testing was aimed at determining the solution grid convergence and the average Nusselt 

number at the computational domain boundaries. A 2D problem concerning natural thermal 

convection in a horizontal channel with square cross-section was chosen [13], Fig. 14. The 

cavern horizontal walls are thermally insulated, while the vertical ones have permanent 

temperatures T1 > T2. 
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Fig. 14. Computational domain geometry and the wall boundary conditions for 

the test problem 
 

The calculations have been performed for a gas with molar mass of 29 kg/Kmol, other 

parameters being: 

• Rib length L = 0.045 m 

• Pressure р = 106604 Pa 

• Dynamic viscosity coefficient µ = 1.8⋅10-5 Pa 

• Thermal conductivity λ = 2.55⋅10-2 W/(m⋅K) 

• Heat capacity ср = 1058 J/(kg⋅K) 

• Three regimes have been considered: 

(1) T1 = 300.5 K, T2 = 299.5 K, Ra = 104, 

(2) T1 = 305 K, T2 = 295 K, Ra = 105, 

(3) T1 = 350 K, T2 = 250 K, Ra = 106, 

The Rayleigh number is calculated by formula (30): 

( )
**

3
21p

2
*

лTм
LTTcgс

Ra
−

=  ,                                                     (30) 

which is a modified (10) for the ideal gas at TS = T1, T∞ = T2, T = 0.5⋅(T1 + T2). 

Tab. 3 contains the Nusselt number average values for the cold wall, calculated by the formula 

∫=
L

0

Nu(y)dy
L
1Nu   ,                                                     (31) 

where 

n
T

ДT
LNu(y)

∂
∂

=                .                                              (32) 

Table 3. Nusselt number average values for the cold wall (Ra = 105) 
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 Nu  

Cell number Present work Source [13] 

40×40 4.5376 4.61653 

80×80 4.5353 4.51945 

160×160 4.5183  

320×320  4.52164 

 

It can be seen that with the use of a 160×160 grid, the difference of our result from the grid-

independent value [13] equals 0.07 %. 

Tab. 4 compares the Nusselt numbers at different Rayleigh numbers. The former were obtained 

in the present work using a 160×160 grid and compared with the grid-independent values [13]. 

In [13], the grid-independent value was obtained using a 320×320 grid. The agreement 

between the results is satisfactory. 

 

Table 4. Comparison of the Nusselt numbers at different Rayleigh numbers (160×160 

grid) 

 Nu  

Ra Present work Source [13] 

104 2.2380 2.2448 

105 4.5183 4.52164 

106 8.91204 8.8251 

 

The temperature fields for Ra = 104 and Ra = 106  are shown in Fig. 15.Under both regimes the 

single-vortex laminar flow is realized, though at Ra = 106 a tendency towards formation of 

additional vortexes in the turning zones of the ascending and descending flows. These are the 

initial signs of the flow in transition regime. 
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(a)      (b) 

Fig. 15. Velocity vectors and temperature distribution: 
(a) – Ra = 104 , (b) – Ra = 106 

 

3. Results of computations for МС4 
3.1. Two-dimensional calculations 

The four regimes of the МС4 test differed from one another by the molten pool depth and the 

power absorbed by the melt. Each regime was calculated with the use of both a 2D analog of 

the complete system of Navier-Stokes equations (6)÷(9) and additional inclusion of the k-ω 

turbulence model (19)÷(20) in the system (6)÷(9). 

The computational domain diagram with a 35.5 mm radius is given in Fig. 16. The upper 

boundary corresponds to the melt free surface, the lateral – to the crucible, and the lower – to 

the bottom calorimeter sections. Tab. 5 contains data on height of the melt, power absorbed by 

the melt, and number of cells in the computational grid for regimes ## 1÷4. The rib of a 

computational cell is approximately 0.4 mm long. It was stated above that the power absorbed 

by the melt had been determined in advance by electromagnetic calculations [2, 3] based on 

experimental data concerning inductor voltage and heat fluxes from the melt and working 

chamber components to the calorimeters. 
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Fig. 16. Computational domain diagram 

 

Table 5.  Melt height; power absorbed by the melt; number of cells in the computational 
grid for regimes ## 1÷4 

Regime Melt height, mm Power absorbed by the 
melt, W 

Number of cells 

1 42 16350 9856 
2 42.5 30200 9856 
3 81.5 32660 17600 
4 79 25520 17600 

 

The wall temperature boundary condition was written as (23) when effective heat transfer 

coefficients were α=0 and α=150 W/(m2⋅K). Here, the value of α is an adjustable parameter, as 

the self-consistent problem of α determination was not solved. At this stage it was important 

to ascertain the possibility of finding a plausible value of α which would cause a below 30% 

mismatch between the calculated and experimental values for heat fluxes under all four regimes 

of the test. 

At α = 0, the heat flux is determined by radiation only, and this approximation is just for the 

high-temperature boundaries of the crust. The α value of 150 W/(m2⋅K) corresponds to the 

gaseous gap with thickness (h) of 1 mm and thermal conductivity λ=0.15 W/(m⋅K), i.e. a 

thickness comparable with a skull grain size and thermal conductivity by an order of magnitude 

lower than that of solid corium. 

Experimental and calculated values of heat fluxes, temperatures and crust thickness for the 

regimes ##1÷4 are given in Tabs. 6÷9, and the mismatch of experimental and calculated data 

are given in percentage terms (also, the absolute deviation ∆T is given for the temperature). All 

the calculated parameters have been averaged for a 5 min interval after the establishment of a 

quasiequilibrium regime. The crust thickness was determined from the Т = Tsol isotherm. The 

temperature of the melt free surface central spot (Tev) was obtained by averaging the heat flux 

from S – a Ø 4 mm area, which corresponds to the pyrometer sighting spot: 
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0.25

S

4
ev dsT1T 








= ∫S

 .                                                   (30) 

Table 6. Comparison of experimental and calculated values. Regime # 1 
Parameter Test Calculated 

 
 

α=150 

Calculated 
 
 

α=0 

Calculated, 
k-ω 

turbulence 
model 
α=150 

Power of radiation from the melt 
surface, W 

5300 4645 
14% 

4645 
14% 

5073 
4.2% 

Temperature of the melt surface 
central spot 

 
2025, С 

 
1928, С 

4.7% 
(∆T=97 K) 

 
1921, С 

5.1% 
(∆T=104 K) 

 
2007, С 
0.9% 

(∆T=18 K) 
Crust thickness on the bottom 

calorimeter, mm 
5.5 8.3 

50% 
3.9 

29% 
6.7 

21% 
Power from the melt to:  

- crucible, W 10200 11259.6 
10 % 

11211.7 
11 % 

10769 
5.5% 

- calorimeter central section, W 150 102.3 
31.8 % 

94.7 
37 % 

126 
16% 

- calorimeter middle section, W 280 180.8 
35.3% 

166.5 
40.5% 

228 
18% 

- calorimeter extreme section, W - 165.5 126.1 206 
Heat fluxes debalance - 0.024 % 0.6 % 0.3 % 

 
 
Table 7. Comparison of experimental and computed values. Regime # 2 

Parameter Test Calculated 
 

 
α=150 

Calculated 
 
 

α=0 

Calculated, 
k-ω 

turbulence 
model 
α=150 

Power of radiation from the melt 
surface, W 

7000 8915.7 
27.3 % 

8948.4 
27.8 % 

8906 
27% 

Temperature of the melt surface 
central spot 

 
2180, С 

 
2303, С 

5.6 % 
(∆T=123 K) 

 
2308, С 

5.8 % 
(∆T=128 K) 

 
2314, С 

6 % 
(∆T=134 K) 

Crust thickness on the bottom 
calorimeter, mm 

4.5 5.4 
20 % 

2.5 
44 % 

4.6 
2% 

Power from the melt to:  
- crucible, W 21460 20672 

3.7 % 
20622 

3.9 % 
20610 

4% 
- calorimeter central section, W 160 134.7 

15.8 % 
120.7 

20% 
145 

9% 
- calorimeter middle section, W 320 245 

23.4 % 
229.3 

28 % 
276 

14 % 
- calorimeter extreme section, W - 225 191.8 257 

Heat fluxes debalance - 0.02% 0.28% 0.02% 
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Table 8. Comparison of experimental and computed values. Regime # 3 

Parameter Test Calculated 
 
 

α=150  

Calculated 
 
 

α=0 

Calculated, 
k-ω 

turbulence 
model 
α=150 

Power of radiation from the melt 
surface, W 

7400 5987.7 
19% 

5995.8 
18.9 % 

6733 
9% 

Temperature of the melt surface 
central spot 

 
2220, С 

 
2101, С 
5.3% 

(∆T=119 K) 

 
2076, С 
6.4% 

(∆T=144 K) 

 
2163, С 
2.5% 

(∆T=57 K) 
Crust thickness on the bottom 

calorimeter, mm 
14 10.5 

25 % 
4.4 

68 % 
14.7 

5% 
Power from the melt to:  

- crucible, W 24080 26285 
6.1 % 

26230.3 
8.9 % 

25391 
5.4% 

- calorimeter central section, W 100 87.6 
12.4% 

102.2 
2.2 % 

88 
12% 

- calorimeter middle section, W 230 153.6 
33 % 

182.8 
20.5 % 

153 
33% 

- calorimeter extreme section, W - 142.3 136.7 142 
Heat fluxes debalance - 0.01% 0.04% 0.46% 

 
 
Table 9. Comparison of experimental and computed values. Regime # 4 

Parameter Test Calculated 
 
 
 

α=150  

Calculated 
 
 
 

α=0 

Calculated, 
k-ω 

turbulence 
model 
α=150  

Power of radiation from the melt 
surface, W 

5970 5141.5 
13 % 

5078.5 
14.9 % 

5840 
2% 

Temperature of the melt surface 
central spot 

 
2090, С 

 
2000, С 
4.5 % 

(∆T=90 K) 

 
1984, С 

5 % 
(∆T=104 K) 

 
2096, С 
0.3% 

(∆T=6 K) 
Crust thickness on the bottom 

calorimeter, mm 
14 14.2 

1.4 % 
7.5 

46 % 
11 

21% 
Power from the melt to:  

- crucible, W 19190 20102.8 
4.7 % 

20126.6 
4 % 

19383 
1% 

- calorimeter central section, W 95 63.2 
33 % 

71.6 
24% 

63 
34% 

- calorimeter middle section, W - 110.5 120.8 110 
- calorimeter extreme section, W - 104 91.24 104 

Heat fluxes debalance - 0.01% 0.1 % 0.08% 
 

Deviation of the results of 2D calculations from experimental data is shown in Tab. 10. 
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Table 10. Deviation of results of 2D calculations from experimental data 

Parameter Deviation, % 
 
 

α=150 

Deviation,% 
 
 

α=0 

Deviation, % 
k-ω turbulence 

model 
α=150 

Power of radiation 
from the melt 
surface, W 

14 (#1) 
27.3 (#2) 
19 (#3) 
13 (#4) 

14  (#1) 
27.8 (#2) 
18.9 (#3) 
14.9 (#4) 

4.2 (#1) 
27 (#2) 
9 (#3) 
2 (#4) 

Temperature of the 
melt surface central 

spot 

4.7 (#1) (∆T= - 97 K) 
5.6 (#2) (∆T= 123 K) 

5.3 ( #3) (∆T= - 119 K) 
4.5 (#4) (∆T= - 90 K) 

5.1 (#1) (∆T= - 104 K) 
5.8 (#2) (∆T= 128 K) 

6.4 (#3) (∆T= - 144 K) 
 5 (#4) (∆T= - 104 K) 

0.9 (#1) (∆T= - 18 K) 
6 (#2) (∆T= 134 K) 

2.5 (#3) (∆T= - 57 K) 
0.3 (#4) (∆T= 6 K) 

Crust thickness on 
the bottom 

calorimeter, mm 

50 (#1) 
20 (#2) 
25 (#3) 
1.4 (#4) 

29 (#1) 
44 (#2) 
68 (#3)  
46 (#4) 

21 (#1) 
2 (#2) 
5 (#3) 

21 (#4) 
Power from the melt 

to: 
- crucible, W 10 (#1) 

3.7 (#2) 
6.1 (#3) 
4.7 (#4) 

11 (#1) 
3.9 (#2) 
8.9 (#3) 
4 (#4) 

5.5 (#1) 
4 (#2) 

5.4 (#3) 
1 (#4) 

- calorimeter central 
section, W 

31.8  (#1)  
15.8 (#2) 
12.4 (#3) 
33 (#4) 

37 (#1) 
20 (#2) 
2.2 (#3) 
24 (#4) 

16 (#1) 
9 (#2) 

12 (#3) 
34 (#4) 

- calorimeter middle 
section, W 

35.5 (#1) 
23.4 (#2) 
33 (#3) 

40.5 (#1) 
28 (#2) 

20.5 (#3) 

18 (#1) 
14 (#2) 
33 (#3) 

Heat fluxes 
debalance 

0.01 ÷ 0.024 0.04 ÷ 0.6 0.02 ÷ 0.46  

 

It can be seen from Tab. 10 that in the course of direct modeling of turbulence the transition 

from α = 150 W/(m2⋅K) to α = 0 has reduced thickness of the crust on the bottom calorimeter 

and this has noticeably decreased accuracy of its calculation for three regimes (##2÷4) of МС4. 

The accuracy of heat fluxes and temperature calculations has changed less significantly. The 

decrease of the calculated crust thickness on the lower calorimeter at α = 0 was caused by the 

temperature rise in the bottom part of the melt. It should be noted that there is ambiguity in the 

effect of α = 150 W/(m2⋅K) → α = 0 transition on the precision of heat fluxes calculation, i.e., 

it can either increase, or decrease. It relates to the features of changes in the flow structure, 

which consists of a system of evolving vortexes (Fig. 17). 
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                                 Regime  #1                                                     Regime #2                        

 

   
                        Regime  #3                                                             Regime  #4                        

 
Fig. 17. Temperature (oC) and velocity vector distribution during regimes #1÷4 in 
МС4. Solved using the nonstationary system of Navier-Stokes equations 

 
Fig. 18 shows the momentary distribution of the velocity absolute value during regime #1 in 

MC4. The velocity peak (Vmax) equals 3.47 cm/s; it is localized in the upper part of the melt 

near the axis in the downward stream. The distribution of velocity across the free surface is 

nonuniform; in some areas zero velocity is observed, and it is there that radiation cools the 

melt noticeably. 
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Fig. 18. Velocity absolute value (cm/s) and velocity vectors distribution during 

regime #1 in MC4 
 
It was shown above that the application of the k-ω turbulence model to the majority of the 

considered regimes of МС4 made calculations of heat fluxes, temperature and crust thickness 

more precise. However, this model reduces the nonstationary flow to the stationary one with a 

simplified flow structure. Indeed, a complex vortex flow with intensive convection in the 

molten pool upper part (Fig. 17), which can be solved using the nonstationary system of 

Navier-Stokes equations, becomes transformed into a single toroidal vortex flow (Fig. 19) 

when the k-ω turbulence model is applied. This effect is due to the nature of the turbulence 

model which uses the averaged characteristics. 

 
Fig. 19. Temperature (oC) and velocity vector distribution during regime #1 in 

МС4. Solved using the k-ω turbulence model 
 

Fig. 20 shows the momentary radial distribution of temperature in the melt during regime #4 in 

МС4 when the direct turbulence modeling is applied. It may be seen that the maximum radial 

nonuniformity of temperature is on the melt free surface (h=79 mm), while this surface 

temperature is lower than that of the underlayer (h=70 mm), it being determined by the surface 

cooling through radiation. Deeper into the melt, the radial nonuniformity of temperature 

reduces, excluding the lateral layer that gives heat to the crucible. 
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Fig. 20. Temperature radial distribution at different distances from the molten 

pool bottom, Regime # 4 in MC4 
 

Fig. 21 shows the momentary heightwise temperature distribution in the melt during regime #4 

in МС4 when the direct turbulence modeling is applied. Near the crucible (r = 35 mm) the melt 

temperature is below TL along the total height. 

On the axis (r = 0) there may be seen a section (at half the melt height) where the temperature 

increases monotonically as the distance from the free surface grows. This effect is caused by 

the nature of free convective flow: the cooled part of the melt descends (from the free surface 

center in this case) and warms up on its way from the laterally positioned heat sources. After 

the peak temperature has been reached locally, the further cooling of the melt as the height 

decreases would be caused by heat removal by the bottom calorimeter. 

Starting from the radius of 20 mm and up to the crucible, the temperature monotonically 

reduces as the height decreases (excluding the subsurface layer which is influenced by the 

surface cooling through radiation). 
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Fig. 21. Heightwise temperature distribution at different distances from the axis. 

Regime #4 in MC4 
 

Fig. 22 shows the momentary distribution of heat flux density along the radius of the three-

section bottom calorimeter. The peak heat flux density is realized in the calorimeter center; it is 

the highest for regime #2 and is close to 0.2 MW, and it’s the lowest, around 0.09 MW, under 

regime #4. 

 
Fig. 22. Heat flux density distribution along the bottom calorimeter radius. 

Regimes #1÷4 in MC4 
 
Fig. 23 shows heat flux densities normalized by the values in the calorimeter center. Obviously, 

regardless of the significant difference between the absolute values, profiles of the normalized 

flows have similarity. 
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Fig. 23. Distribution along the bottom calorimeter radius of the heat flux density 
normalized by the value in the calorimeter center (regimes #1÷4 in MC4) 

 
The figures below relate to the use of the k-ω turbulence model used for assessing the 

Kolmogorov scale of turbulence. 

From Fig. 24 that shows the turbulent energy dissipation rate distribution it is seen that the 

peak ε value is localized at the axis in the melt upper part. The calculation using (15) shows 

that in this zone the value of the Kolmogorov scale of turbulence is minimal (ηmin=0.19 mm), 

while in other parts of the melt η varies within the 0.19<η<0.7 mm range at T>Tliq (Fig. 25). A 

sharp increase of η happens at the melt solidification near the low-temperature walls (T<Tliq). 

 

 
Fig. 24. Kinetic turbulent energy dissipation rate, m2/s3 (МС4 #1) 
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Fig. 25. Kolmogorov scale of turbulence, mm (МС4 #1) 

 

The size of cells in the used computational grid is about 0.4 mm, therefore in the considerable 

part of the melt the Kolmogorov scale is above this value and only twice smaller near the 

computational domain axis. This confirms applicability of direct numerical modeling of 

turbulence in MC4. It should be reminded that it provided acceptable agreement between the 

calculated and experimental data on heat fluxes, free surface temperature and crust thickness 

on the bottom calorimeter. Also important is that it finds a solution to the vortex structure of 

the flow. 

Application of the k-ω turbulence model, in its turn, has added precision to the calculation of 

most parameters, but significantly simplified structure of the free convective flow. 

Peculiarity of the given melt calculations in proximity to the crucible tubes is notable. That is, 

at some height along the computational domain lateral boundary, which models the crucible 

surface, the calculated temperature is above TSol though below TLiq (TSol<T<TLiq) (Fig. 20). A 

T<TSol would be natural to expect at the lateral boundary, as a liquid phase cannot maintain the 

melt boundary vertical. 

This disagreement may be explained by the incompleteness of modeling the 3D melt boundary 

near the crucible. Indeed, the real boundary formed by the crucible tubes is not uniform and, 

theoretically, there may be gaps in the solid phase on it though shape would be conserved, as a 

liquid may keep fixed over the gaps due to a very strong surface tension (about 0.6 Н/m [10]). 

This does not contradict to the results of the lateral crust inspection after MC4, which showed 

the presence of areas with minor crust thickness bordering on a relatively thick crust that had 

formed in the gaps between the tubes. The lateral boundary of the accepted computational 

geometry is cylindrical, and on it we obtain an averaged temperature, which at some height 

falls within the TSol<T<TLiq range. Despite the mentioned gaps in the solid phase on the real 

lateral boundary, a model may use the condition of adhesion due to the small effective area of 

the gaps. 
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The setting of boundary conditions for the melt/crucible lateral boundary may be simplified by 

using the T=TSol condition of the first kind. The influence of this condition, as well as of the 

condition T=TLiq on the results of calculations are analyzed in Appendix 1. 

 

3.2. Three-dimensional calculations 
Fig. 26 shows a 3D computational grid containing about 600 000 cells. 

 
Fig. 26. Computational grid 

 
Calculations were made for regime #1 of МС4 using the nonstationary system of Navier-

Stokes equations (1)÷(5) with the temperature boundary condition (23) at α = 0. 

The results of computations are given in Tab. 11; the disagreement with the heat flux 

experimental data is satisfactory and does not exceed 30 %. 

 
Table 11. Computations for regime #1 in MC4 

Parameter Test Calculated 
2D 
α=0 

Calculated 
3D 
α=0 

Power of radiation from the melt surface, W 5300 4645 
14% 

4537 
15% 

Temperature of the melt surface central spot  
2025, С 

1921, С 
5.1% 

1918, С 
5.2% (107 C) 

Crust thickness on the bottom calorimeter, mm 5.5 3.9 
29% 

5.35 
2.7% 

Power from the melt to: 
- crucible, W 10200 11211.7 

11 % 
11098 
8.8% 

- calorimeter central section, W 150 94.7 
37 % 

97.9 
35% 

- calorimeter middle section, W 280 166.5 
40.5% 

174.4 
37% 
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Fig. 27 shows the melt free surface and temperature fields that reflect vortex structure of the 

stream. Obviously, the size and shape of the calculated large-scale formations is analogous to 

the experimental ones. 

 

                            

 
Calculated       Test 

 
Fig. 27. Temperature distribution in the melt free surface central spot Ø 21 mm. 

 
Fig. 28 shows the momentary distribution of the melt velocity on the free surface. The 

calculated maximum velocity equals 2.66 cm/s, it being 50% less than the peak experimental 

value which is 4 cm/s (Tab. 12). 
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Fig. 28. Velocity distribution on the melt free surface 
 
 
 
Table 12 

Particle velocity, 
cm/s, and its 

direction 
3.5 
NW 

3.2 
SE 

3.2 
W 

1.6 
W 

1.6 
S 

4.0 
S 

4.0 
E 

2.4 
SW 

3.2 
W 

4.0 
S 

0.8 
SE 

Distance from the 
top, mm 8 13 7.8 7.8 11,5 15 21 6 6 16 12 

Distance from the 
left edge, mm 5 1.4 3 2.1 0.3 3.1 1.1 9 11 25 29 

 
Fig. 29 shows temperature distribution on the free surface and along the melt vertical plane 

recorded at ∆t=0.25 s. The peak temperature in bulk melt is observed near the crucible in the 

pool upper part, it being determined by the heat sources distribution (Fig. 7). 

Calculations have indicated two areas in the melt where the descending flow dominates. The 

first of them is the peripheral area, several millimeters thick, located in proximity to the 

crucible. The descending flow in it is caused by cooling of the melt by the crucible. The second 

one – the central area – is depicted in the figures as a leaf with a dynamically changing shape. 

The downward movement in it is determined by the minimum power supply near the axis, and 

a temperature lower than at the boundaries due to the surface cooling through radiation. 

Volume electromagnetic forces in MC4 are insignificant, therefore the flow structure is 

determined by the buoyancy forces. A considerable downward movement along the axis 
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entrains the melt from the free surface to the center. 

The downward axial flow attenuates soon after it passes the liquidus boundary due to the 

sharply increasing viscosity. 

 

        
(a)      (b) 

 

         
(c)      (d) 

 
Fig. 29. Dynamics of temperature (°С) change across the vertical plane and on a 

half of the melt free surface 
Time step is 0.25 s. Sequence: left-right, top-down. The melt crust is grey. 

 

Fig. 30 shows the momentary temperature radial distribution in the melt. Obviously, the 

maximum radial temperature nonuniformity is observed on the free surface due to the intensive 

heat radiation into the environment, when the delay of a liquid element near the surface leads 

to rapid cooling, and the emergence of a liquid element from below yields a local rise of 

temperature. 
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Fig. 30. Momentary radial temperature distribution at different height (h) from 

the pool bottom 
 
Fig. 31 shows the momentary heightwise temperature distribution along radiuses in the melt. 

Regardless of the radius, a shift from the free surface 2-3 mm deeper into the melt would first 

show a sharp temperature rise for about 250 K and then temperature lowering at the decrease 

of height. Along the melt axis (r=0), the temperature is undergoing a nonmonotonic change up 

to the TLiq level. 

 
Fig. 31.  Momentary heightwise temperature distribution in the pool along 

different radiuses (r) 
 
Finally, proceeding from the agreement between the calculated and experimental data on heat 

fluxes and the free surface structure, verification of the model and DYMELT code using the 
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MC4 data can be regarded as satisfactory. 

 

4. Results of computations for МС5 
The difference of МС5 tests from МС4 is in the replacement of the bottom calorimeter with 

the steel specimen, as in MC5 the specimen surface corrosion at the contact with C-100 

corium was investigated. 

In Section 1.3 it was noted that the electromagnetic forces in MC5 were about an order of 

magnitude stronger than in MC4. Besides, the skin layer was thicker in МС5 at 0.13 MHz 

inductor frequency, i.e. an order of magnitude smaller than in МС4. This has lead to significant 

changes in the free convective flow structure in MC5 compared to MC4. 

This Section offers the results of molten corium numerical modeling in MC5 using the 

nonstationary system of Navier-Stokes equations. In a 2D approximation, the problem has 

been solved taking into account the conjugated heat exchange between the specimen and 

corium. Hydrodynamics was the only subject of 3D calculations, because the experimental 

temperature distribution along the specimen radius was specified for the lower boundary 

between corium and specimen. 

 

4.1. Two-dimensional calculations 
The computational domain is shown in Fig. 32. Among its components are the melt, specimen, 

layers of fianite and ZrO2 powder, and a simulator of the gaseous above-melt atmosphere (in 

the present approximation – a stationary transparent medium with thermal conductivity and 

heat capacity of air). 

The model assumed the following boundary conditions: 

• Tw = 320 K at the outer boundaries of the gaseous medium simulator; 

• Tw = 310 K at the conjugation boundaries between the specimen and calorimeters; 

• Heat exchange through radiation and thermal conductivity (23) at Tw=320 K and 

α = 50 W/(m2⋅K) at the boundaries of the crucible with corium, and with the ZrO2 powder 

and fianite; 

• Conjugated heat exchange (26) at the corium/specimen boundary; 

• Adhesion condition of u = v = 0 at the boundaries of corium with the crucible and 

specimen; 

• The gliding condition of v = 0, ∂u/∂n =0 at the corium upper boundary. 
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Fig. 32. Computational domain diagram in МС5 

 

Fig. 33 shows the distribution of temperature in corium, lateral skull, specimen and a part of 

the gaseous medium simulator during regime #1 in MC5. It may be seen that the radial 

distribution of temperature is more uniform in the specimen than in corium due to high thermal 

conductivity of steel. At the same time, the radial nonuniformity of the free surface 

temperature has caused a considerable radial nonuniformity of temperature in the layer of the 

gaseous medium simulator adjacent to the melt. Therefore, the coordinated calculation of the 

free convective gas movement should take into consideration the temperature field structure at 

the melt surface. 

Tev, the calculated melt free surface temperature, averaged for a Ø 4 mm circle using formula 

(30), was 2563 K, i.e. 40 K less than in the test. 
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Fig. 33.  Temperature (oC) distribution, regime #1 

 
Fig. 34 shows velocity and temperature fields in the molten pool for the instants of time 

differing from each other by ∆t = 1 s under the established quasiequilibrium condition of the 

system. The corium crust is given in grey colour. It may be seen that peak temperatures are 

located at the melt upper part periphery, and for the said instants of time Tmax was 3061; 3008 

and 3072°С, respectively. This pretty rapid change of the peak temperature is caused by the 

flow nonstationary structure, which is represented in the given 2D formulation by three 

toroidal vortexes. 

A small upper vortex surrounds the zone of the absolute peak temperature of the melt. It is 

created by the electromagnetic force, which is directed towards the axis and pool bottom, and 

is at its peak in this part of the melt (Appendix 2 demonstrates the significant influence of the 

electromagnetic forces on the melt condition in МС5). 

The lower vortex has the maximum size. The flow spinning in it is caused by the radial 

spreading of the downstream near the bottom crust and the following turn of the flow upwards 

in the pool corner. This vortex shows the maximum velocity, which can be explained by 

acceleration in a stream of incompressible liquid at lessening of its cross-section during the turn 

at the molten pool lower corner, as in the present case. 

The medium vortex changes its position and shape more dynamically than the upper and lower 

vortexes, as it is located between them. 
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(a)     (b)    (c) 

 
Fig. 34. Velocity vectors and corium temperature (°С), ∆t = 1 s, regime #1 

 

Fig. 35 shows the velocity absolute value distribution at ∆t = 1 s. In Fig. 35(b) the corium near 

the free surface moves upwards excluding the solid fraction along the axis, and in Fig. 35(c) it 

moves downwards. Such a frequent change in the flow direction correlates with observations 

of the melt surface which changes in MC5 more dynamically and unpredictably than in МС4. 

The differences may be caused by the above-mentioned noticeable effect of electromagnetic 

forces in МС5. A comparison of velocities in МС4 and МС5 (Figs. 18 and 35) shows the melt 

peak velocity in MC5 to be several times higher. 

 

  
(a)     (b)    (c) 

 
Fig. 35.  Velocity absolute value (cm/s) and vectors, 

∆t   = 1 s, regime #1 
 

Fig. 36 shows the crust shapes for the considered three time instants. The differences along the 

melt edges are hardly noticeable. A small isle of solid fraction in the free surface center has 

formed as a result of melt cooling through radiation at the deceleration of liquid near the 

central point (characteristic for the 2D geometry). 

The calculated thickness (hcomp) of the corium lower crust above the specimen center during 

regime #1 in MC5 was 3.2 mm, while the experimental value (hexp) was 3 mm. 
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(a)    (b)    (c) 

Fig. 36. Corium crust, ∆t = 1 s, regime #1 
 

The distribution of density of the heat flux to the specimen during regime #1 in MC5 is shown 

in Fig. 37 for the time instants corresponding to (a, b) in Fig. 35. The maximum heat flux 

density (q) is seen to be in the center and approximately equal 1 MW/m2. Away from the axis, 

the value of heat flux density diminishes, and this decrease becomes noticeably faster at R>20 

mm because of the lower crust thickening. Starting from R=14 mm, heat fluxes for the time 

instants (a) and (b) are identical. Their difference in the specimen surface central part before 

R=14 mm relates to fluctuation of the axial flow parameters, however, as Fig. 35 shows, a 

lower heat flux value corresponds to a higher velocity of the downflow. Direct correlation is 

absent due to the inertia of the process in the specimen/corium/crust system. The heat flux 

drops sharply at R=32 mm because of the transition from the specimen to fianite. 

 
Fig. 37. Radial distribution of density of the heat flux from corium to the 

specimen, regime #1 
 

The flux to the specimen forms the temperature distribution, a 2D image of which is given in 

Fig. 38. The radial distribution of temperatures are shown in Fig. 39. The specimen center is 

seen to be superheated relative to the edges. This superheating decreases away from the 

specimen top. For instance, at ∆h=0.5 mm the temperature difference between the center and 

edges equals 167 K, and at ∆h=2 mm ∆Т=144 K. The high radial temperature gradient in 

fianite is due to low thermal conductivity. 
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Fig. 38. Temperature (° С) distribution in the specimen, regime #1 

 

 
Fig. 39. Temperature distribution along the radius of the specimen and lateral 
skull at different distances (∆h) from the specimen upper top, regime #1 

 

Tab. 13 summarizes regimes ##1÷4 parameters, as well as the calculated and experimental 

values of crust thickness above the specimen (their satisfactory agreement is obvious). 

Table 13. Regimes ##1÷4parameters 

Regime 
No. 

Time from 
melting start, 

s 

Pool height, 
mm 

Crust thickness 
above the 

specimen center, 
mm 
Test 

Crust thickness 
above the 

specimen center, 
mm 

Calculated 

Heat generation 
in the melt [3], 

KW 

1 22615 59 3.0 3.3 20.16 
2 60303 60 2.75 3.3 21.98 
3 91052 64 2.75 4 21.55 
4 132811 58 2.75 3.15 21.31 

 

In MC5, the specimen temperature was measured in the points which coordinates are given in 

Tab. 14. 
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Table 14. Points of the specimen temperature measurements 
 

Thermocouple r, mm (distance from junction to 
the specimen axis) 

h, mm (from the melt-facing 
top) 

TC01 
TC02 
TC03 
TC04 
TC05 
TC06 
TC07 
TC08 
TC09 
TC10 
TC11 
TC12 
TC13 

10 
10 
10 
10 
10 
10 
10 
29 
29 
29 
29 
29 
7.5 

0 
2 
4 
6 
6 
8 

15 
0 
2 

15 
40 

101.7 

 

The history of thermocouple readings is given in Fig. 40. 

 
Fig. 40. Thermocouple readings in MC5 

 

Figs. 41÷44 compare the experimental and calculated heightwise temperature distribution in 

the specimen during regimes ##1÷4. It can be seen that satisfactory agreement is observed only 

for regimes ##1÷2. For regimes ##3÷4, the calculated values are much lower than the 

experimental ones. This can be explained by changes in the above-melt conditions which were 

disregarded in the present calculations: for instance, an above-melt crust that started forming 

during regime #3 and completely covered the free surface during regime #4. 
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(a)      (b) 

Fig. 41. Heightwise temperature distribution, 10 mm (a) and 29 mm (b) off the axis, 
regime #1 

            
(a)     (b) 

Fig. 42. Heightwise temperature distribution, 10 mm (a) and 29 mm (b) off the axis, 
regime #2 

             
(a)     (b) 

Fig. 43. Heightwise temperature distribution, 10 mm (a) and 29 mm (b) off the axis, 
regime #3 
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(a)      (b) 

Fig. 44. Heightwise temperature distribution, 10 mm (a) and 29 mm (b) off the axis, 
regime #4 

 

Fig. 45 shows time dependence of the calculated temperature at 3 points in the specimen which 

correspond to the location of thermocouples ТС02, ТС04 and ТС09. Zero time corresponds to 

some nonsteady state; a quasistationary state is attained 250 s later and then temperature 

fluctuations at δT of about 10°C are observed. These fluctuations are caused by thermal 

instability of the specimen/corium system in a quasiequilibrium state. The maximum rate of 

temperature change (δT/δt) is about 0.5 K/s. 

r – distance from the axis; h – distance from the specimen surface 

Fig. 45. Calculated time-dependent temperatures at locations of 3 thermocouples in the 
specimen, regime #1 
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4.2. Three-dimensional calculations 
The 3D calculations for regime #1 of МС5 have been performed using the complete system of 

Navier-Stokes equations (1)÷(5) and a computational grid analog of that given in Fig. 12. The 

temperature distribution in the stationary gas above the melt has been calculated. The radial 

temperature distribution obtained by means of 2D calculations has been specified for the pool 

bottom. Boundary conditions for other surfaces were the same as in 2D calculations. 

Fig. 46 shows a 3D crust boundary with the liquid phase and – for comparison – a crust 

resulting from 2D calculations. Obviously, shapes of the crusts are similar. Crust thickness 

above the specimen center was 6.4 mm according to 3D calculations, 3.3 mm by 2D 

calculations and 3 mm in the test. 

 
Fig. 46. Crust surface bordering on the melt 

Fig. 47 illustrates temperature distribution across the melt free surface taken at ∆t=0.5 s. From 

a comparison with Fig. 29 it may be concluded that the melt surface appearance is changing 

more dynamically in MC5 than in MC4. Besides, the boundaries of large-scale structures are 

less distinct in MC5 than in MC4, and this agrees well with a video of the melt surface. 

      
(a)      (b) 
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(c)      (d) 

 

Fig. 47. Temperature (° С) distribution across the melt free surface. 

∆t = 0.5 s, sequence: left-right, top-down 
 

The calculated free surface temperature averaged for the pyrometer central sighting spot (Tev) 

was 2768°С, i.e. 160°С above the experimentally obtained value. 

Therefore, a 3D flow calculation for regime #1 in both MC5 and MC4 provided a possibility of 

verifying physicomathematical models using the melt free surface structure – a high-quality 

flow characteristic. 

At the next stage of investigations it would be of interest to reduce the size of computational 

cells in 3D geometry for the sake of a more complete direct modeling of a turbulent flow and 

reliable overcoming the Kolmogorov scale of turbulence. 

Two-dimensional calculations, which are less reliable for studies of the space-time structure of 

a flow, though yield satisfactory results concerning temperature, heat fluxes and crust 

thickness, is planned to complement with the coordinated calculation of the electromagnetic 

problem. This will automatically link the Lorentz forces distribution and the volume heat 

sources to the evolving temperature field and the melt velocity, thus significantly raising the 

degree of the problem self-consistency. This may help overcome difficulties associated with 

calculating regimes ##3, 4 of MC5: the crust that appeared above the melt had not been taken 

into account in the electromagnetic problem, the results of which were used as external in the 

present paper. 
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Conclusions 
• The МС4 and МС5 data were used for verifying models and software tools for 2D 

and 3D modeling of molten corium in the cold crucible. 

• The type of boundary conditions for the cold walls and the corium-conjugated 

specimen surface has been identified. 

• The possibility of direct modeling of turbulent flow using the complete system of 

Navier-Stokes equations has been demonstrated. This approach ensured 

satisfactory calculations of heat fluxes to the melt-confining surfaces, crust 

thickness on the bottom calorimeter in MC4 and on the specimen surface in MC5, 

temperature distribution in the specimen, and structure of the melt free surface. 

Some cases demonstrated satisfactory agreement between the calculated and 

experimental temperatures for the melt free surface center. 

• The specimen temperature has been found to fluctuate in the specimen/corium 

system in the quasistationary state in MC5. 

• Efficiency of the k-ω turbulence model for 2D calculations of heat fluxes, crust 

thickness and temperature in the melt surface center under the MC4 conditions has 

been demonstrated. 
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Appendix 1 
 

МС4 computations with the temperature boundary condition of the 
first kind 

 

Additional thermal hydraulic calculations of the molten pool in MC4 are presented in this 

Appendix. They have been performed using simplified temperature boundary conditions. Here, 

adequacy of the boundary conditions used in the main part of the Report is demonstrated. The 

considered versions are given below. 

1. The melt/crucible boundary is isothermal and impermeable. T=TLiq, condition (23) 

is set for the bottom calorimeter surface at α=150 W/(m2⋅K). 

Condition designation: Liq/(23). 
 

2. An isothermal wall condition T=TLiq. is set for the melt/crucible and melt/bottom 

calorimeter boundaries. 

Condition designation: Liq/Liq. 

 

3. An isothermal wall condition T=TSol is set for the melt/crucible boundary and 

condition (23) is set for the bottom calorimeter surface at α=150 W/(m2⋅K). 

Condition designation: Sol/(23). 
 

4. An isothermal wall condition T=TSol is set for the melt/bottom calorimeter 

boundary. 

Condition designation: Sol/Sol. 
 

Fig. P1-1 shows the distribution of temperature under the Liq/(23) conditions. Significant 

distortion of the lower crust shape is seen, and its thickness is underestimated in comparison 

with the experimental value. Under the Liq/Liq conditions, crust thickness is zero. 
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Fig. P1-1. Temperature (°С) distribution. Regime #1, МС4, Liq/(23) conditions 

Tabs P1-1÷P1-4 summarize the results of calculations using the Liq/(23) and Liq/Liq 

conditions for regimes ##1÷4 in MC4. It follows from them that satisfactory results were 

obtained for the melt surface center, excluding regime #2. 

Calculations were satisfactory for heat fluxes from the free surface to the melt and crucible for 

all four regimes. 

Heat flux to the bottom calorimeter was calculated with a significant error, and crust thickness 

calculations were also unsatisfactory. 

 
Table P1-1. Regime # 1. 

Parameter Test Calculated 
Liq/(23) 
α=150 

Calculated 
Liq/Liq 
α=150 

Power of radiation from the melt surface, W 5300 5935 
12% 

5995 
13 % 

Temperature of the melt surface central spot  
2025, С 

 
2064, С 

(41 K) 2% 

 
2073, С 

(68 K)  3.3 % 
Crust thickness on the bottom calorimeter, mm 5.5 1.1 

80% 
0 

100% 
Power from the melt to: 

- crucible, W 10200 8717 
14.5 % 

10070 
13% 

- calorimeter central section, W 150 276 
84 % 

67 
55 % 

- calorimeter middle section, W 280 545 
95% 

99 
65 % 

- calorimeter extreme section, W - 874 114 
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Table P1-2. Regime # 2. 
Parameter Test Calculated 

Liq/(23) 
α=150 

Calculated 
Liq/Liq 
α=150 

Power of radiation from the melt surface, W 7000 9440 
35 % 

9512 
36 % 

Temperature of the melt surface central spot  
2180, С 

 
2360, С 

(180 K)  8.2 % 

 
2359, С 

(179 K)  8.2 % 
Crust thickness on the bottom calorimeter, mm 4.5 0.9 0 

100 % 
Power from the melt to: 

- crucible, W 21460 18911 
12 % 

20264 
5.6 % 

- calorimeter central section, W 160 291 
82 % 

81 
50 % 

- calorimeter middle section, W 320 590 
84 % 

137 
27 % 

- calorimeter extreme section, W - 955 193 
 
Table P1-3. Regime # 3. 

Parameter Test Calculated 
Liq/(23) 
α=150 

Calculated 
Liq/Liq 
α=150 

Power of radiation from the melt surface, W 7400 7422 
0.3% 

7447 
0.6% 

Temperature of the melt surface central spot  
2220, С 

 
2220, С 

(0 K) 0% 

 
2208, С 

(-12 K) 0.5% 
Crust thickness on the bottom calorimeter, mm 14 0.5 0 

100 % 
Power from the melt to: 

- crucible, W 24080 23431 
2.6 % 

24806 
3 % 

- calorimeter central section, W 100 284 
186% 

64 
36% 

- calorimeter middle section, W 230 585 
154 % 

132 
43 % 

- calorimeter extreme section, W - 945 193 
 
Table P1-4. Regime # 4. 

Parameter Test Calculated 
Liq/(23) 
α=150 

Calculated 
Liq/Liq 
α=150 

Power of radiation from the melt surface, W 5970 6533 
9.4 % 

6575 
10 % 

Temperature of the melt surface central spot  
2090, С 

 
2125, С 

(35 K) 1.6 % 

 
2139, С 

(49 K) 2.3 % 
Crust thickness on the bottom calorimeter, mm 14 1.2 

91 % 
0 

100 % 
Power from the melt to: 

- crucible, W 19190 17274 18591 
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10 % 3.1 % 
- calorimeter central section, W 95 273 

187 % 
62 

35 % 
- calorimeter middle section, W - 560 134 
- calorimeter extreme section, W - 912 167 

 

Fig. P1-2 shows temperature distribution under the Sol/(23) condition. It may be seen that the 

crust above the calorimeter center is calculated much better than under the Liq/(23) condition. 

However, there is still a significant error concerning the bottom crust shape at the calorimeter 

edge. Under the Sol/Sol conditions, the calculated crust thickness is zero. 

 
Fig. P1-2. Temperature (°С) distribution. Regime #1, МС4, Sol/(23) conditions 

 
Tabs P1-5÷P1-8 summarize the results of calculations using the Sol/(23) and Sol/Sol 

conditions for regimes ##1÷4 in MC4. A comparison with the previous conditions Liq/(23) and 

Liq/Liq shows an increased error of calculating the melt surface center temperature, and a 

higher accuracy of calculations of crust thickness above the calorimeter center. 

A comparison of the results obtained using the Sol/(23) and Sol/Sol boundary conditions with 

the results obtained under conditions (23) at all solid boundaries (Tab. 10) yields a conclusion 

that a transition to the Sol/(23) and Sol/Sol boundary conditions has increased the error of 

calculations of the melt surface center temperature and crust thickness. 

It may be seen from Tabs. p1-5÷P1-8 that the Sol/(23) and Sol/Sol conditions provide 

satisfactory results of calculating heat fluxes from the melt free surface and those to the 

crucible. 

For molten pools with small depths (regimes ##1, 2), condition Sol/(23) ensures high precision 

(error below 13%) of calculating heat fluxes to the bottom calorimeter sections. For deeper 

molten pools (regimes ##3, 4), however, the calculations of heat fluxes to the bottom 

calorimeter sections should better employ the Sol/Sol condition. 
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Table P1-5. Regime # 1. 
Parameter Test Calculated 

Solid/(23) 
α=150 

Calculated 
Solid-Solid 

α=150 
Power of radiation from the melt surface, W 5300 4233 

20 % 
4283 

19 % 
Temperature of the melt surface central spot  

2025, С 
 

1883, С 
(-142 K) 7 % 

 
1900 

(-125 K) 6 % 
Crust thickness on the bottom calorimeter, mm 5.5 4.8 

12 % 
0 

100 % 
Power from the melt to: 

- crucible, W 10200 11137 
9 % 

11503 
13 % 

- calorimeter central section, W 150 157 
5 % 

90 
40 % 

- calorimeter middle section, W 280 316 
13 % 

196 
30 % 

- calorimeter extreme section, W - 505 260 
 
Table P1-6. Regime # 2. 

Parameter Test Calculated 
Solid/(23) 

α=150 

Calculated 
Solid-Solid 

α=150 
Power of radiation from the melt surface, W 7000 6771 

3 % 
6778 

3 % 
Temperature of the melt surface central spot  

2180, С 
 

2106, С 
(-74 K)   3.4 

% 

 
2145, С 

(-35 K)   1.6 % 

Crust thickness on the bottom calorimeter, mm 4.5 3.7 
18 % 

0 
100 % 

Power from the melt to: 
- crucible, W 21460 22355 

4.2 % 
22692 

5.7 % 
- calorimeter central section, W 160 170 

6.2 % 
109 

32 % 
- calorimeter middle section, W 320 346 

8.1 % 
240 

25 % 
- calorimeter extreme section, W - 552 383 

 
Table P1-7. Regime # 3. 

Parameter Test Calculated 
Solid/(23) 

α=150  

Calculated 
Solid-Solid 

α=150  
Power of radiation from the melt surface, W 7400 5255 

29% 
5307 

28% 
Temperature of the melt surface central spot  

2220, С 
 

2014, С 
(-206 K) 9.3% 

 
2016, С 

(-184 K) 8.2% 
Crust thickness on the bottom calorimeter, mm 14 4.4 

68 % 
0 

100 % 
Power from the melt to: 
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- crucible, W 24080 26437 
10 % 

26636 
10 % 

- calorimeter central section, W 100 160 
60% 

106 
6% 

- calorimeter middle section, W 230 329 
43 % 

260 
13 % 

- calorimeter extreme section, W - 526 380 
 
Table P1-8. Regime # 4. 

Parameter Test Calculated 
Solid/(23) 

α=150  

Calculated 
Solid-Solid 

α=150  
Power of radiation from the melt surface, W 5970 4710 

21 % 
4721 

21 % 
Temperature of the melt surface central spot  

2090, С 
 

1947, С 
(-143 K)  6.8 % 

 
1950, С 

(-140 K)  6.7 % 
Crust thickness on the bottom calorimeter, mm 14 5.1 

64 % 
0 

100 % 
Power from the melt to: 

- crucible, W 19190 19736 
2.8 % 

20140 
5 % 

- calorimeter central section, W 95 138 
31 % 

97 
2 % 

- calorimeter middle section, W - 278 230 
- calorimeter extreme section, W - 470 329 

 

Basically, the results given in this Appendix and in Section 3.1 show optimality of using 
condition (23) with α=150 W/(m2⋅K) for all solid boundaries of the melt in the main part of this 
investigation, as it yielded satisfactory results concerning both heat flux values and 
temperatures with a plausible shape of the crust on the bottom calorimeter for all regimes of 
МС4. 
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Appendix 2 

Computations disregarding electromagnetic forces 
A significant difference between structures of the free convective flows in MC4 and MC5 was 
explained in the present Report by the increase of electromagnetic forces at the transition from 
MC4 to MC5, Figs. 8, 9, 11, 12. 

In order to identify the electromagnetic forces’ role, they were disregarded in computations 
described in the present Appendix. Regimes #4 in МС4 and #1 in МС5 were considered. The 
neglect of electromagnetic forces in computations for MC4 has caused a hardly noticeable 
change of the calculated parameters, but it does not refer to MC5. 

Fig. P2-1 shows temperature distribution during regime #1 in MC5 disregarding the Lorentz 
forces. A comparison with Fig. 34 shows that crust thickness on the bottom calorimeter has 
increased by an order of magnitude, while peak temperature in the melt – by 200°С. With such 
a crust thickness, no satisfactory result concerning temperature distribution in the specimen 
should be expected. Indeed, the neglect of electromagnetic forces has caused a drop of the 
temperature at the thermocouple TC02 location to 485°С, i.e. for about 500°С. 

An explanation of such a fact may be that in MC4 and МС5 the electromagnetic forces vector 
is directed downwards, therefore the stronger the Lorentz forces are, the higher their 
importance for heat transport to the bottom crust is, i.e. their influence on the bottom crust 
thickness increases. 

In МС4 the Lorentz forces were much weaker than in МС5 and likewise their influence on 
thermal regime of the molten pool bottom. 

 
Fig. P 2-1. Temperature (°С) distribution. Regime #1, MC5, disregarding 

electromagnetic forces 


