Pretest studies of PARAMETER SF4 scenario with ICARE/CATHARE V2

(stand alone version ICARE2 V3.mod1.1-rev2)

A. Volchek, Yu. Zvonarev, O.Coindreau, F. Fichot NSI RRC KI in collaboration with IRSN

Presented by A. Volchek

ISTC meeting on PARAMETER SF4 experiment Podolsk, Russia, July 29, 2009

Background

Previous experience

- Development of air oxidation model for ICARE2
- Simulations of PARAMETER SF2 and SF3 experiments with SA ICARE2 and ICARE/CATHARE codes

Current application

Pretest examination of PARAMETER SF4 Scenario with on the basis of previous studies (input decks, model application)

Key items of test scenario

<u>Steam inlet</u>				
p = 3 bar $T = 750 K$				
flow = 0.0 g/s	from	0 - 1500 s		
		000 - 16000 s		
0.0 g/s	after	16000 s		
<u>Ar inlet</u>				
p = 3 bar T = 750 K				
flow = 2.0 g/s	from	0 - 17060 s		
0.0 g/s	after	17060 s		

<u>Air flow</u> p = 3 bar T = 300 K flow = 0.5 g/s from 16000 - 17060 s

External conditions on SS body t

p = 3 bar T = 300 K external condition

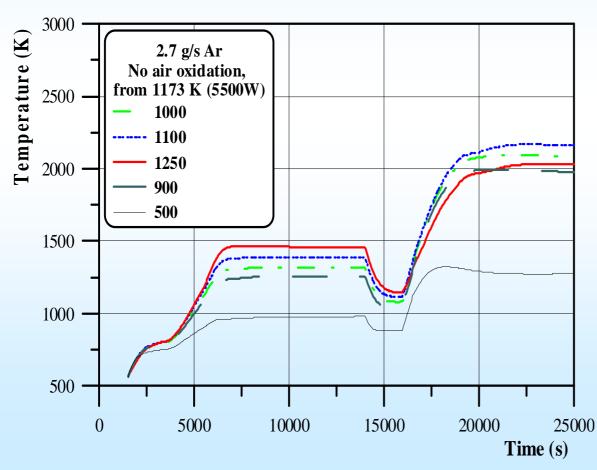
Electrical power			
time (s) powe	er (W)		
0.0	1.0		
100.0	2000.0		
2500.0	2000.0		
3500.0	2000.0		
6000.0	8400.0 (beginning of plateau)		
8000.0	8800.0 (~ 1450 K)		

		` /
14000.0	8800.0	
14003.0	5500.0	(~1173 K)
17060.0	5500.0	
17063.0	1.0	

External resistance

18000.0 1.0

Equal to 4.0 Ohm (as for SF3)


Similar to PSI one

Longer duration of preoxidation phase (14000 seconds)

Studies without air oxidation (SA ICARE2 code version)

SF3 input deck + accident scenario

Temperatures of second ring (heated) at different elevations

Conclusions

Air oxidation model switch off

- When steam is switch off then the temperature increases up to 2100 K in 2000 seconds
- The hottest zone is shifted to lower elevations

•

Maximum temperatures can be obtained at 1100 mm due to low coolant flow

Studies without air oxidation (SA ICARE2 code version)

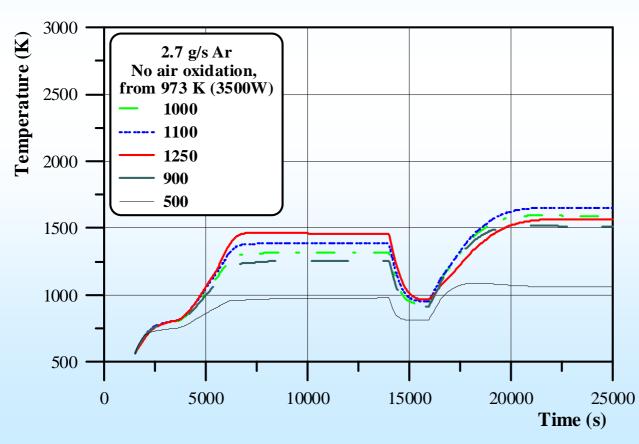
SF3 input deck + accident scenario

Evolution of zirconia thickness (Air oxidation model switch off)

Conclusions

300 ZrO₂ thickness (µm) 200 1250mm 100 0 5000 10000 15000 20000 25000 0 Time (s)

With best-fit correlations in ICARE/CATHARE desirable thickness (~280 µm) is reached approximately at 14000 seconds


Studies without air oxidation (SA ICARE2 code version)

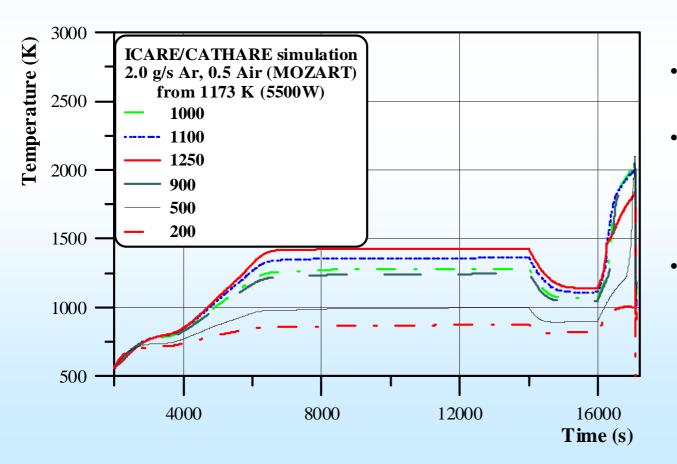
SF3 input deck + accident scenario + low initial temperature (Variant II)

Conclusions

•

Temperatures of second ring (heated) at different elevations

Air oxidation model switch off

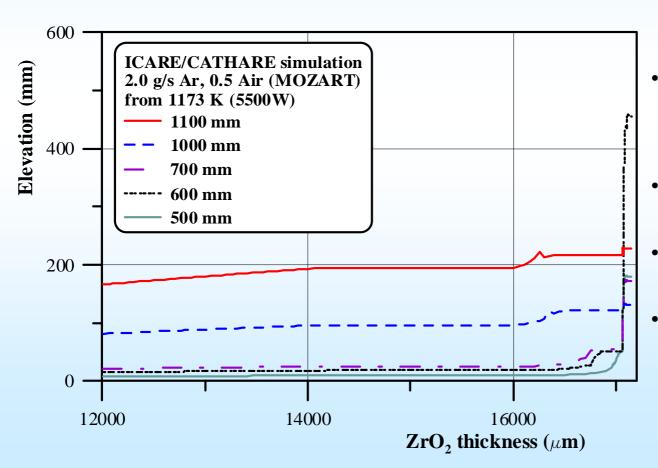

- At low electrical powers (973 K) the temperatures of air injection phase may be too low for intensive air oxidation reaction
- Temperatures at air injection phase are very sensitive to variation of electrical power

Air oxidation studies (ICARE/CATHARE)

SF3 input deck + accident scenario

Temperatures of second ring (heated) at different elevations

Conclusions


Air ingress – 0.5 g

- Air oxidation reaction firstly started at hottest elevations
 - Peak of the air oxidation in simulation was shifted to much lower region (between 500 and 600 mm) starvation conditions
 - Before quenching temperature rate growth was up to 6K/s

Air oxidation studies (ICARE/CATHARE)

SF3 input deck + accident scenario

Oxide layer thickness at different elevations

Conclusions

Air ingress – 0.5 g

- Predicted oxide scale thickness - relatively small increase at initially heated zone (900 – 1300 mm)
- Sharp increase at 550 mm with maximum value of 460 μm.
- Initial ZrO₂ thickness in sharp escalation zone ~ 50 μm
- 1060 seconds of air oxidation lead to melting at 550 mm => decrease of exposition interval to 900 seconds (common presentation)

Examination with ICARE/CATHARE allowed to obtain following results

Air oxidation model switch off

- When steam is switch off then the temperature increases up to 2100 K in 2000 seconds
- The hottest zone is shifted to lower elevations
- Maximum temperatures can be obtained at 1100 mm due to low coolant flow
- At low electrical powers (973 K) the temperatures of air injection phase may be too low for intensive air oxidation reaction
- Temperatures at air injection phase are very sensitive to variation of electrical power

Air oxidation model switch on

- Air oxidation reaction firstly started at hottest elevations
- Peak of the air oxidation in simulation was shifted to much lower region (between 500 and 600 mm) starvation conditions
- Before quenching temperature rate growth was up to 6K/s
- Predicted oxide scale thickness relatively small increase at initially heated zone (900 1300 mm)
- Initial ZrO2 thickness in sharp escalation zone ~ $50 \mu m$

It should be accounted that ICARE/CATHARE air oxidation model was verified at lower temperatures (T < 1500 K) and at higher temperatures can have large uncertainty in kinetics