



## International Science and Technology Center

INVESTIGATION OF FISSION PRODUCT RELEASE FROM HIGH BURN-UP FUEL ANNEALED UNDER OXIDIZING AND REDUCTION CONDITION

## VERONIKA

(VVER Experiments on Release due to Over-heating: Normalization and Knowledge Augmentation).

**Project Proposal** 

RIAR (Dimitrovgrad), IBRAE (Moscow)





- To obtain detailed experimental data on fission products release from highly irradiated VVER fuel along with fuel micro-structure evolution under severe accident conditions
  - To use these results for the development (and validation) of the physical models and numerical codes describing fuel behaviour and fission products release





# **MFPR Code Features**

### **Development**

### IBRAE-IRSN co-operation (1995-2006)

## **Mechanistic description**

of FP behavior in irradiated UO<sub>2</sub> with intact geometry

- □ *in irradiation regime : steady state and transients*
- □ in annealing regime : steady state and transients
- □ in accidental conditions: LOCA, severe accidents

## Two kinds of mechanistic models

- Fission gases and gas bubbles
- Chemically active elements
- ♦ And also...
  - Interaction between the two models
  - Fuel oxidation/vaporisation in steam/hydrogen/inert mixtures
  - *Final Evolution of fuel microscopic defect structure*





# **Tasks of VERONIKA Project**

- To obtain new detailed experimental data on fuel microstructure, FP release and behaviour under the insufficiently investigated conditions for VVER high burn-up fuel
- Basing on results of the new experiments, to obtain data missing for FP release modelling and code development
- To improve existing physical models, to develop and validate the codes predicting FP release under severe accident conditions basing on newly obtained data for VVER fuel





# **Scope of VERONIKA Project Tests**

- Investigation of fission products release from fuel with burnup of 60 MW\*d/kgU in oxidizing and reducing environments in the temperature range of 1400 - 2300°C
- Investigation of the release of a wide list of fission products including short living isotopes: <sup>85</sup>Kr, <sup>133</sup>Xe, <sup>131</sup>I, <sup>137</sup>Cs, <sup>134</sup>Cs, <sup>106</sup>Ru, <sup>103</sup>Ru, <sup>144</sup>Ce, <sup>99</sup>Mo, <sup>140</sup>Ba, <sup>95</sup>Zr and other. That will be provided by pre-irradiation of the specimens in the research reactor
- Accurate representation of evolution of high burn-up fuel microstructure under tests conditions (by preand post-test microanalysis of samples)





# **Main Test Procedures**

- Manufacturing of the experimental rig
- Initial fuel rod examinations
- Preparation and certification of fuel specimens (fuel pellets and fragments of fuel rods)
- Fuel pellets and fuel rod fragments encapsulation
- Preirradiation of the capsule
- Fuel specimen withdrawal from the capsule
- FP release tests
- Post-test examinations





# Initial fuel rod examination

# **Objectives**:

Selection of the typical spent fuel rod

# **Test procedures**

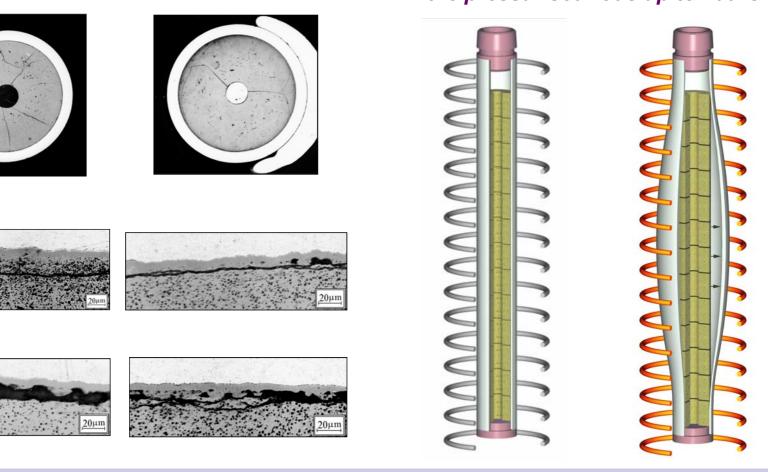
- Y-scanning
- Plenum gas analysis

# Fuel and cladding structure characterization

**Metallography** – Pellet crack pattern, fuel-cladding interaction/gap, fuel porosity, fuel grain size measurement.

**SEM** - (polished surface and fractography) porosity, intra- and intergranular bubbles pattern.

**EPMA** – Fission product distribution, precipitates composition.




# **Specimen preparation**

## **Bare fuel pellet extraction**

#### Radial and contraction cracks in the fuel

Pellet-clad separation by heating the pressurised rods up to 700°C

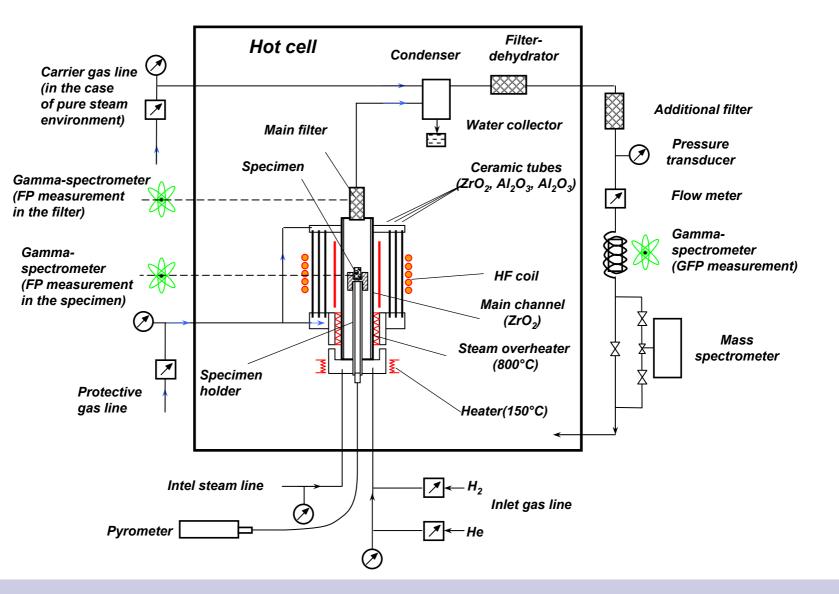




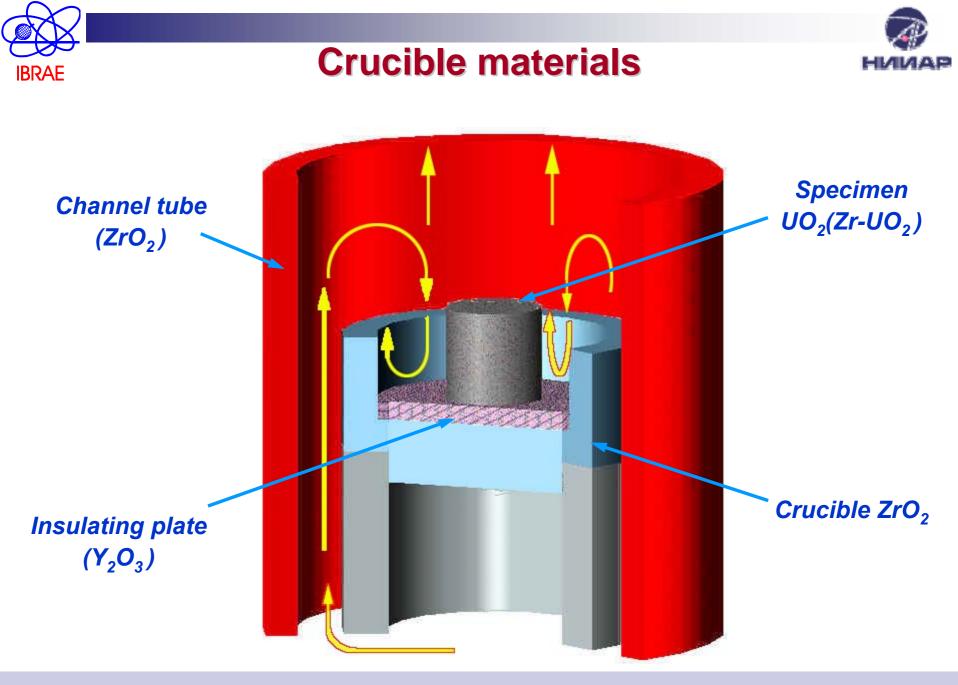




# **Refabricated fuel irradiation**


# Low power (30-50 Wt/cm) Low temperature (below 400°C)

**Objective:** accumulation of the short-lived isotopes in the solid solution; prevent any fuel structure transformation



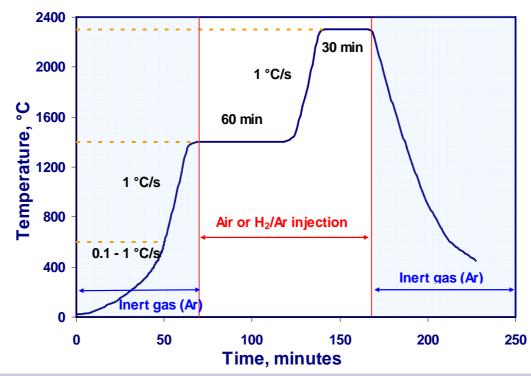







13th CEG-SAM Meeting Budapest, Hungary March 5-7, 2008






# **Test Regime**



### **Test temperature**

- •heating in the inert atmosphere up to the temperature of 600 °C
- •heating from 600 up to 1400 °C with a rate of 1 K/s
- •annealing at 1400 °C during 1 hour
- •heating with a rate of ~ 1 K/s up to the specified temperature (1700 or 2300 °C)
- •annealing during 30 minutes
- •end of heating



13th CEG-SAM Meeting Budapest, Hungary March 5-7, 2008





## **Test matrix**

| Test<br>number | Sample type      | Gas phase           | Test temperature (°C) |
|----------------|------------------|---------------------|-----------------------|
| 1              | Bare fuel        | H <sub>2</sub> O/Ar | 1700                  |
| 2              | Bare fuel        | H <sub>2</sub> /Ar  | 1700                  |
| 3              | Bare fuel        | H <sub>2</sub> O/Ar | 1400                  |
| 4              | Bare fuel        | H <sub>2</sub> O/Ar | Above 2000            |
| 5              | Bare fuel        | H <sub>2</sub> /Ar  | 1400                  |
| 6              | Bare fuel        | H <sub>2</sub> /Ar  | Above 2000            |
| 7              | Bare fuel        | Air/Ar              | 1400                  |
| 8              | Bare fuel        | Air/Ar              | 1700                  |
| 9              | Fuel rod segment | H <sub>2</sub> O/Ar | 1700                  |
| 10             | Fuel rod segment | Air/Ar              | 1700                  |





## **Test Performance**

### Parameters to be measured during the test

- intensity of GFP in the delaying coil
- intensity of FP in a fuel specimen
- intensity of FP on the main filter

## **Results to be obtained**

• relative FP release





# **Post-Test Examinations**

## 1. **Optical metallography**

- grain size
- porosity
- □ gas swelling

## EPMA and SEM analysis

- local content and radial distribution of fission products
- elemental content of precipitates in the fuel





# Part B. MFPR (Model for Fission Products Release)

# **Objectives**

On the base of new experimental results:

- to develop theoretical models of fission products and irradiated VVER fuel behaviour under conditions of severe accidents
- to improve and to adapt physical models and codes developed for PWR fuel to VVER fuel





# **MFPR Tasks in VERONIKA Project**

- Pre-test calculations of new experiments for determination of parameters and conditions of the tests
- Processing and analysis of results of new experiments
- Development and improvement of the physical models on fission products release and high burnup VVER fuel behaviour under conditions of severe accident
- Implementation of the developed and improved models in the MFPR code
- Verification of the MFPR code against the new experimental database and other new available data at the end or during the program





# **Project Costs**

## The first stage

- (3 years duration, 960 000 \$):
- $T_10$  beginning of the work under the project;
- T<sub>1</sub>0+1.5 year manufacturing and testing of the experimental rig;
- T<sub>1</sub>0+1 year adaptation of the MFPR code to the new experimental rig, pre-test calculations;
- ■T<sub>1</sub>0+3 years first series of tests (10 tests);
- T<sub>1</sub>0+3,0 years theoretical analysis of the obtained experimental data, development of models and codes.