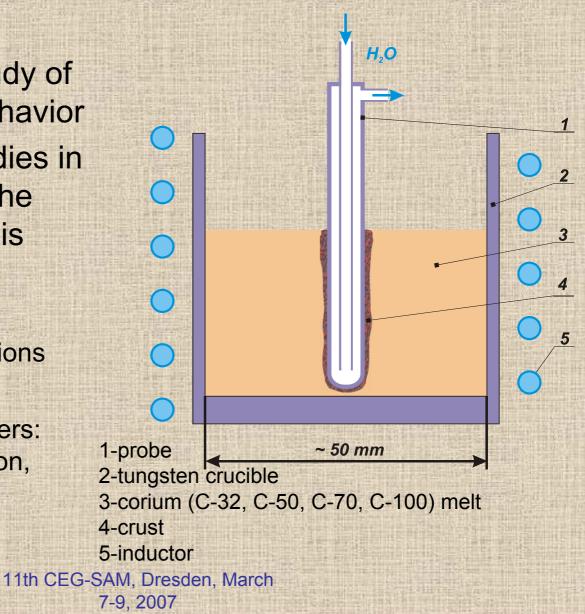
Study of corium transient behavior; Corium properties measurements

RRC "Kurchatov Institute" NPO LUCH IBRAE Presented by V. Strizhov

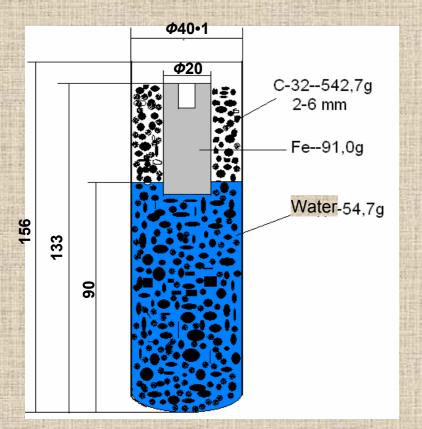
Background

- Since 1994 the Russian Research Center "Kurchatov Institute" as an Operating Agent performs the OECD RASPLAV and MASCA Projects investigating the behavior of prototypic materials in the lower head
 - Develop the accident management strategy at the stage of the melt pool formation in the lower head
 - Determine the boundary conditions for the success of the strategy
 - Study material interactions and their influence on the success of the IVR concept

Outcomes from the RASPLAV/MASCA Projects

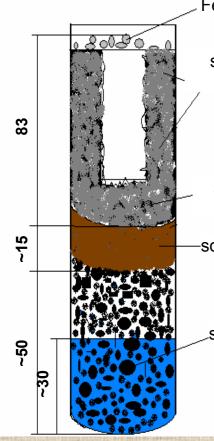

- The RASPLAV/MASCA Project results provided new insights on the behavior of the corium and structural materials and their interactions and cover PWR, VVER, BWR and CANDU parameters
- Success of the long term in-vessel retention strategy depends on the corium oxidation degree and amount of steel in the lower head
- The infrastructure and methodology was developed to conduct corium tests and measurements of corium properties and properties of metallic phase obtained in the tests as well

Open issues


- Understanding of the melt pool transient behavior is one of the issues determining the success of the in-vessel retention strategy
 - Stability of layered configuration
 - Debris behavior and meltpool formation
- Extension of the material properties database
 - Molten ZrO₂ properties
 - Corium properties

Proposal 1: Crust growth kinetics

- The objective: study of crust transient behavior
- Experimental studies in conjunction with the theoretical analysis proposed by M.Veshchunov
 - Isothermal conditions
 - Cooled tube
 - Variable parameters: corium composition, exposure time


C-32+Fe+H₂O

C-32+Fe+H₂O T~2000K, 40min

T 2000K,40 min

 \sim Fe+FeO+Fe₂O₃+incl.(U,Zr)O₂

sol. solut. $(U,Zr)O_2$ +sol. solut. ZrO₂cub. Fe+Fe₂O₃

sol. solut. $(U,Zr)O_2$ +sol. solut. ZrO₂cub.FeO+Fe₂O₃

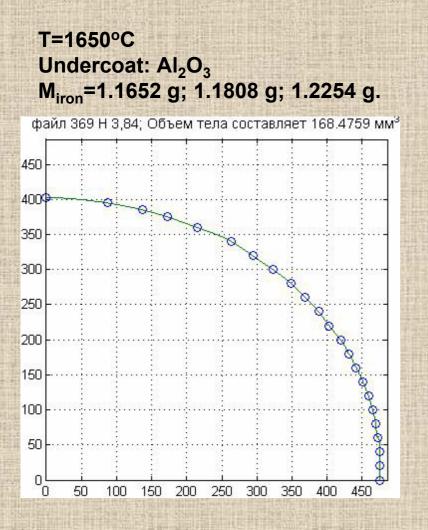
-sol. solut. $(U,Zr)O_2 + ZrO_2$ monocl.

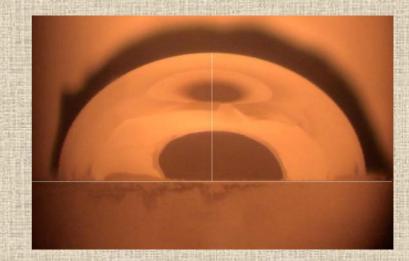
 $sol. solut.(U,Zr)O_2 + \alpha - Zr(O)$

Proposal 2: Study of the debris formation and structure

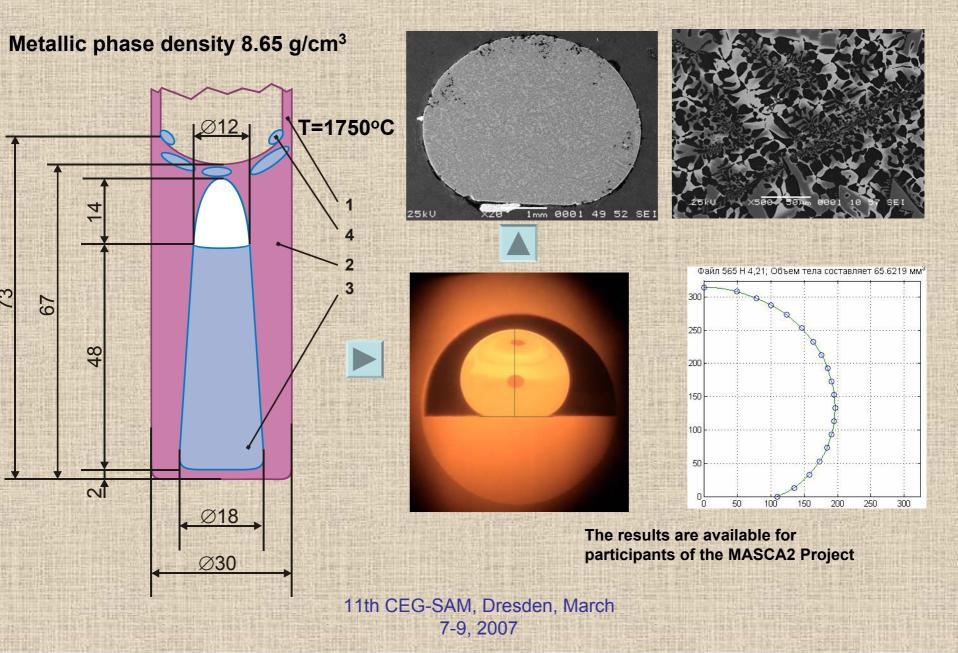
- The goal of the project is to study formation and behavior of the debris in the vessel
- Test conditions:
 - Continuous oxidation by steam
 - Temperature gradients
 - scale
- Varying parameters:
 - Scale of the tests
 - Amount of steel
 - Corium composition

Selection of the Undercoat Material and Development of the Manufacture Technology


 UO_2 $T_{melt} = 2850^{\circ}C$ Interaction at $ZrO_2 + 20\% Y_2O_3$ $T_{melt} \sim 2600^{\circ}C$ $T = 1600 - 1800^{\circ}C$


 $Y_2O_3 - T_{melt} \sim 2415^{\circ}C$ – Undercoat of Y_2O_3 did not practically interact within 10 minutes up to the temperature of 2000°C.

Iron Density (C-0.02; Si-0.023; Mn-0.015; S-0.02 mass%; Fe-rest)



#	Mass, g	Droplet height, mm	Droplet volume, mm ³	Density, g/cm ³ .
1 1 1 1 1 1 1	1.1652	and the local sector of the se	168.4759	6.916
2	1.1808	4.00	169.3137	6.974
3	1.2254	4.08	175.253	6.992

 $ρ_{aver}$ =6.961 g/cm³ $ρ_{ref}$ =7.0505-7,06•10⁻⁴(t-1535°C), g/cm³ $ρ_{1650}$ =6.9695 g/cm³ Δ=0.12%

Metallic Alloy Density

Proposal 3: Properties measurements

- The goal of the project is to study properties of molten corium components and coria
 - Density
 - Surface tension
- The following species to be studied:
 - $-ZrO_2$
 - Corium of different compositions