Introduction to Ceramics

  • type: Lecture (V)
  • semester: WS 19/20
  • time: 2019-10-16
    11:30 - 13:00
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A)
    30.22 Physik-Flachbau


    2019-10-17
    09:45 - 11:15 wöchentlich
    10.50 Raum 702
    10.50 Kollegiengebäude Bauingenieure II

    2019-10-24
    09:45 - 11:15 wöchentlich
    10.50 Raum 702
    10.50 Kollegiengebäude Bauingenieure II

    2019-10-30
    11:30 - 13:00
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A)
    30.22 Physik-Flachbau

    2019-10-31
    09:45 - 11:15 wöchentlich
    10.50 Raum 702
    10.50 Kollegiengebäude Bauingenieure II

    2019-11-07
    09:45 - 11:15 wöchentlich
    10.50 Raum 702
    10.50 Kollegiengebäude Bauingenieure II

    2019-11-13
    11:30 - 13:00
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A)
    30.22 Physik-Flachbau

    2019-11-14
    09:45 - 11:15 wöchentlich
    10.50 Raum 702
    10.50 Kollegiengebäude Bauingenieure II

    2019-11-21
    09:45 - 11:15 wöchentlich
    10.50 Raum 702
    10.50 Kollegiengebäude Bauingenieure II

    2019-11-27
    11:30 - 13:00
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A)
    30.22 Physik-Flachbau

    2019-11-28
    09:45 - 11:15 wöchentlich
    10.50 Raum 702
    10.50 Kollegiengebäude Bauingenieure II

    2019-12-05
    09:45 - 11:15 wöchentlich
    10.50 Raum 702
    10.50 Kollegiengebäude Bauingenieure II

    2019-12-11
    11:30 - 13:00
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A)
    30.22 Physik-Flachbau

    2019-12-12
    09:45 - 11:15 wöchentlich
    10.50 Raum 702
    10.50 Kollegiengebäude Bauingenieure II

    2019-12-19
    09:45 - 11:15 wöchentlich
    10.50 Raum 702
    10.50 Kollegiengebäude Bauingenieure II

    2020-01-08
    11:30 - 13:00
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A)
    30.22 Physik-Flachbau

    2020-01-09
    09:45 - 11:15 wöchentlich
    10.50 Raum 702
    10.50 Kollegiengebäude Bauingenieure II

    2020-01-16
    09:45 - 11:15 wöchentlich
    10.50 Raum 702
    10.50 Kollegiengebäude Bauingenieure II

    2020-01-22
    11:30 - 13:00
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A)
    30.22 Physik-Flachbau

    2020-01-23
    09:45 - 11:15 wöchentlich
    10.50 Raum 702
    10.50 Kollegiengebäude Bauingenieure II

    2020-01-30
    09:45 - 11:15 wöchentlich
    10.50 Raum 702
    10.50 Kollegiengebäude Bauingenieure II

    2020-02-05
    11:30 - 13:00
    30.22 Physik-Hörsaal Nr. 3 (Kl. HS A)
    30.22 Physik-Flachbau

    2020-02-06
    09:45 - 11:15 wöchentlich
    10.50 Raum 702
    10.50 Kollegiengebäude Bauingenieure II


  • lecturer: Prof. Dr. Michael Hoffmann
  • sws: 3
  • lv-no.: 2125757
Prerequisites

none

Recommendations:

Fundamentals in natural science are recommended for students in mechanical and industrial engineering. The lecture requires the basics of the material science courses in mechanical or industrial engineering for bachelor students.

Description

Media:

Slides for the lecture:

available under http://www.iam.kit.edu/km

Bibliography
  • H. Salmang, H. Scholze, "Keramik", Springer
  • Kingery, Bowen, Uhlmann, "Introduction To Ceramics", Wiley
  • Y.-M. Chiang, D. Birnie III and W.D. Kingery, "Physical Ceramics", Wiley
  • S.J.L. Kang, "Sintering, Densification, Grain Growth & Microstructure", Elsevier
Content of teaching

After a short introduction to interatomic bonding, fundamental concepts of crystallography, the stereographic projection and the most important symmetry elements will be given. Different types of crystal structures are explained and the relevance of imperfections are analysed with respect to the mechanical and electrical properties of ceramics. Then, the impact of surfaces, interfaces and grain boundaries for the preparation, microstructural evolution and the resulting properties is discussed. Finally, an introduction is given to ternary phase diagrams.

The second part of the course covers structure, preparation and application aspects of nonmetallic inorganic glasses, followed by an introduction to the properties and processing methods of fine-grained technical powders. The most relevant shaping methods, such as pressing, slip casting, injection moulding and extrusion are introduced. Subsequently, the basics of science of sintering and the mechanisms for normal and abnormal grain growth are discussed. Mechanical properties of ceramics are analysed using basic principles of linear elastic fracture mechanics, Weibull statistics, concepts for subcritical crack growth and creep models to explain the behaviour at elevated temperatures. Furthermore it is demonstrated that mechanical properties can be siginificantly enhanced by various types of microstructural toughening mechanisms. The electronic and ionic conductivity of ceramic materials are explained based on defect-chemical considerations and band structure models. Finally, the characteristics of a dielectric, pyroelectric, and piezoelectric behaviour is discussed.

Workload

regular attendance: 45 hours
self-study: 135 hours

Aim

The students know the most relevant crystal structures and defects of non metallic inorganic materials, are able to read binary and ternary phase diagrams and are familar with powdertechnological shaping techniques, sintering and grain growth. They know the basics of the linear elastic fracture mechanics, are familar with Weibull statistics, K-concept, subcritical crack growth, creep and the opportunities for microstructural reinforcement of ceramics. The students are able to explain the correlation among chemical bonding, crystal and defect structures and the electrical properties of ceramics.

Exam description

The assessment consists of an oral exam (30 min) taking place at a specific date (according to Section 4(2), 2 of the examination regulation). The re-examination is offered at a specific date.