

Combining Methods to Model the Performance of a Sodium-Ion Battery

J. Naumann, P. Maidl, T. Akcay, S. Daubner, A. Pamperin, M. Kamlah, M. Neumann

KIT - The Research University in the Helmholtz Association

www.kit.edu

Novel Na-Ion Battery Materials

sodium more abundant than lithium

- evaluate and improve novel electrode materials
- consider different scales
- establish workflow among simulation methods

NVP

 $\blacksquare Na_3V_2(PO_4)_3$

3D network for diffusion of Na ions^[1]

voltage plateau

Iow electronic conductivity^[2]

Adv. Funct. Mater. 2022, 30.34, 2001289
 Rare Met. 2022, 41.1, 115–124

Specific Capacity [mAhg⁻¹]

NVP/C Electrodes

porous NVP carbon composite (NVP/C)

boost electronic conductivity

short paths for solid-state diffusion

capacity close to theoretical value^[3]

[3] ChemElectroChem 2024, 11.3, e202300401

Batteries Supercaps 2024, 7.4, e202300409

REM image by Luca Schneider

Combining Methods

Microstructure Generation

virtual reconstruction
 electrode and porous particle

discrete element method^[7]
 basis for resistor network method

alternative: digital image reconstruction^[6]

Batteries Supercaps 2024, 7.4, e202300409

[6] Batteries Supercaps 2024, 7.4, e202300409
[7] Energy Technol. 2022, 9.6, 2000886

Effective Transport Properties

effect of microstructure on transport
 sodium ions and electrons

resistor network method^[5]

alternative: steady state flow

[5] Powder Technol. 2021, 378, 659-666

J. Power Sources **2016**, 334, 191-201

Powder Technol. 2021, 378, 659-666

IAM Institute for Applied Materials

Combining Methods

Diffusion of Sodium in Host Material

NVP experiences phase separation

concentration-dependent diffusion coefficient

phase-field method

- transport of sodium ions & electronic transport
- insertion reaction
- diffusion of sodium in host material

[4] Energy Technol. 2021, 9.6, 2000910

experiment

model

experiment

model

significant contact resistance lowers voltage

experiment

model

significant contact resistance lowers voltage solid state diffusion limits rate performance

experiment

model

significant contact resistance lowers voltage solid state diffusion limits rate performance

OPTIMIZATION POTENTIAL

Summary and Outlook

combine methods to model cell behavior

understand effects on different scales

improvement of electrode structure and composition

