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Plasticity of Metals and Intermetallics

… traces back to V. Volterra and general consideration of cuts in conjunction with displacements 
(dislocations) or inclinations (disclinations):

Elastic Theory of Dislocations

Dislocations

𝑥𝑥 𝑦𝑦 𝑧𝑧

Disclinations 𝑥𝑥

𝑦𝑦

𝑧𝑧

𝑥𝑥 𝑦𝑦 𝑧𝑧

Initial cylinder
with cut along

the cylinder axis
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Plasticity of Metals and Intermetallics

In general, the equilibrium condition must be fulfilled:

�𝜕𝜕 𝜕𝜕𝑥𝑥𝑖𝑖 𝜎𝜎𝑖𝑖𝑖𝑖 = 0

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜀𝜀𝑖𝑖𝑖𝑖

𝜀𝜀𝑖𝑖𝑖𝑖 =
1
2

�𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖 + �𝜕𝜕𝑢𝑢𝑖𝑖

𝜕𝜕𝑥𝑥𝑗𝑗

Brief Introduction
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Plasticity of Metals and Intermetallics

Screw dislocation with dislocation line along 𝑧𝑧 and plane of displacement within 𝑥𝑥 − 𝑧𝑧:

Stress Fields of Straight Dislocations

Ansatz: 𝑢𝑢𝑥𝑥 = 𝑢𝑢𝑦𝑦 = 0,𝑢𝑢𝑧𝑧 =
𝑏𝑏

2𝜋𝜋
tan−1(𝑦𝑦, 𝑥𝑥)

𝜎𝜎𝑖𝑖𝑖𝑖 =
0 0 𝜏𝜏𝑥𝑥𝑧𝑧
0 0 𝜏𝜏𝑦𝑦𝑧𝑧
𝜏𝜏𝑥𝑥𝑧𝑧 𝜏𝜏𝑦𝑦𝑧𝑧 0

=
𝐺𝐺 𝑏𝑏
2𝜋𝜋

0 0 −
𝑦𝑦

𝑥𝑥2 + 𝑦𝑦2

0 0
𝑥𝑥

𝑥𝑥2 + 𝑦𝑦2

−
𝑦𝑦

𝑥𝑥2 + 𝑦𝑦2
𝑥𝑥

𝑥𝑥2 + 𝑦𝑦2 0

In case of a finite cylinder, torque equilibrium is not fulfilled. There is an additional (constant) shear 
stress necessary in order to avoid spinning of the arrangement.

𝑥𝑥

𝑦𝑦

𝑧𝑧, 𝑏𝑏
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Plasticity of Metals and Intermetallics

Screw dislocation with dislocation line along 𝑧𝑧 and plane of displacement within 𝑥𝑥 − 𝑧𝑧:

Stress Fields of Straight Dislocations
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J. P. Hirth, J. Lothe: “Theory of Dislocations”, Malabar, USA: Krieger Publishing Company (1982, reprint 1992)

𝜎𝜎𝜃𝜃𝑧𝑧 =
𝐺𝐺 𝑏𝑏
2𝜋𝜋 𝑟𝑟

𝜎𝜎𝑟𝑟𝑧𝑧 = 𝜎𝜎𝑟𝑟𝜃𝜃 = 𝜎𝜎𝑟𝑟𝑟𝑟 = 𝜎𝜎𝜃𝜃𝜃𝜃 = 𝜎𝜎𝑧𝑧𝑧𝑧 = 0

If you want to do it your own, you also have to convert the 
divergence to cylinder coordinates �𝜕𝜕 𝜕𝜕𝑥𝑥𝑖𝑖 𝜎𝜎𝑖𝑖𝑖𝑖 = 0. 

𝜃𝜃
𝑟𝑟

𝑧𝑧, 𝑏𝑏



Plasticity of Metals and Intermetallics

Screw dislocation with dislocation line along 𝑧𝑧 and plane of displacement within 𝑥𝑥 − 𝑧𝑧:

Stress Fields of Straight Dislocations
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𝑢𝑢𝑧𝑧 =
𝑏𝑏

2𝜋𝜋
tan−1(𝑦𝑦, 𝑥𝑥)

undeformed
parallel planes 
of 𝑏𝑏 in spacing

dislocation line along 𝑧𝑧

screw-like distortion of the 
planes



Plasticity of Metals and Intermetallics

Screw dislocation with dislocation line along 𝑧𝑧 and plane of displacement within 𝑥𝑥 − 𝑧𝑧:

Stress Fields of Straight Dislocations

𝑥𝑥
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0.00
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𝜏𝜏𝑦𝑦𝑧𝑧 /
𝐺𝐺

2𝜋𝜋
𝜏𝜏𝑥𝑥𝑧𝑧 /

𝐺𝐺
2𝜋𝜋

± 0.15

𝑦𝑦/𝑏𝑏

𝑥𝑥/𝑏𝑏

+

−
+−

core region ≈ 𝑏𝑏

0.15 𝐺𝐺
2𝜋𝜋

is in the order of 1.2 GPa for Cu!
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Plasticity of Metals and Intermetallics

Edge dislocation with dislocation line along 𝑧𝑧 and Burgers vector along 𝑥𝑥:

Stress Fields of Straight Dislocations
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J. P. Hirth, J. Lothe: “Theory of Dislocations”, Malabar, USA: Krieger Publishing Company (1982, reprint 1992)

𝜎𝜎𝑖𝑖𝑖𝑖 =
𝜎𝜎𝑥𝑥𝑥𝑥 𝜏𝜏𝑥𝑥𝑦𝑦 0
𝜏𝜏𝑥𝑥𝑦𝑦 𝜎𝜎𝑦𝑦𝑦𝑦 0
0 0 𝜎𝜎𝑧𝑧𝑧𝑧

=
𝐺𝐺 𝑏𝑏

2𝜋𝜋 1 − ν

−
𝑦𝑦 � 3𝑥𝑥2 + 𝑦𝑦2

𝑥𝑥2 + 𝑦𝑦2 2
𝑥𝑥 � 𝑥𝑥2 − 𝑦𝑦2

𝑥𝑥2 + 𝑦𝑦2 2 0

𝑥𝑥 � 𝑥𝑥2 − 𝑦𝑦2

𝑥𝑥2 + 𝑦𝑦2 2
𝑦𝑦 � 𝑥𝑥2 − 𝑦𝑦2

𝑥𝑥2 + 𝑦𝑦2 2 0

0 0
−2ν 𝑦𝑦
𝑥𝑥2 + 𝑦𝑦2

Ansatz: 𝑢𝑢𝑥𝑥 =
𝑏𝑏

2𝜋𝜋
tan−1 𝑦𝑦, 𝑥𝑥 +

𝑥𝑥𝑦𝑦
2 1 − ν (𝑥𝑥2 + 𝑦𝑦2)

,

𝑢𝑢𝑦𝑦 = −
𝑏𝑏

8𝜋𝜋 1 − ν
1 − 2ν ln 𝑥𝑥2 + 𝑦𝑦2 +

𝑥𝑥2 − 𝑦𝑦2

𝑥𝑥2 + 𝑦𝑦2
,𝑢𝑢𝑧𝑧 = 0 𝑥𝑥, 𝑏𝑏

𝑦𝑦

𝑧𝑧



Plasticity of Metals and Intermetallics

Edge dislocation with dislocation line along 𝑧𝑧 and Burgers vector along 𝑥𝑥:

Stress Fields of Straight Dislocations
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J. P. Hirth, J. Lothe: “Theory of Dislocations”, Malabar, USA: Krieger Publishing Company (1982, reprint 1992)

𝜎𝜎𝑟𝑟𝑟𝑟 = 𝜎𝜎𝜃𝜃𝜃𝜃 = −
𝐺𝐺 𝑏𝑏 sin𝜃𝜃

2𝜋𝜋 1 − ν 𝑟𝑟

𝜎𝜎𝑟𝑟𝜃𝜃 =
𝐺𝐺 𝑏𝑏 cos𝜃𝜃

2𝜋𝜋 1 − ν 𝑟𝑟

𝜎𝜎𝑧𝑧𝑧𝑧 = ν 𝜎𝜎𝑟𝑟𝑟𝑟 + 𝜎𝜎𝜃𝜃𝜃𝜃 =
𝐺𝐺 𝑏𝑏 ν sin𝜃𝜃
𝜋𝜋 1 − ν 𝑟𝑟

𝜎𝜎𝑟𝑟𝑧𝑧 = 𝜎𝜎𝜃𝜃𝑧𝑧 = 0

𝜃𝜃
𝑏𝑏

𝑟𝑟

𝑧𝑧



Plasticity of Metals and Intermetallics

Edge dislocation with dislocation line along 𝑧𝑧 and Burgers vector along 𝑥𝑥:

Stress Fields of Straight Dislocations

undeformed 
parallel planes 
of 𝑏𝑏 in spacing

dislocation line along 𝑧𝑧

edge-like distortion of the 
planes with additional 
plane close to the core

𝑢𝑢𝑥𝑥=
𝑏𝑏

2𝜋𝜋
tan−1 𝑦𝑦,𝑥𝑥 +

𝑥𝑥𝑦𝑦
2 1 − ν (𝑥𝑥2 + 𝑦𝑦2)

,

𝑢𝑢𝑦𝑦 = −
𝑏𝑏

8𝜋𝜋 1 − ν
1 − 2ν ln 𝑥𝑥2 + 𝑦𝑦2 +

𝑥𝑥2 − 𝑦𝑦2

𝑥𝑥2 + 𝑦𝑦2
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Plasticity of Metals and Intermetallics

Stress Fields of Straight Dislocations
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Plasticity of Metals and Intermetallics

The stress fields of general dislocations are obtained by linear superposition.
The stress fields can be used to determine the interactions of dislocations and other defects being 
itself associated with stress fields.
In case of dislocation-dislocation interactions, we will utilize the stress field in conjunction with 
Peach-Köhler force to calculate the interaction force between parallel dislocations.
In the case of solute-dislocation interactions, the dominant part of the interaction stems from 
hydrostatic distortion of the lattice by solute atoms and the pressure associated with it (generally 
valid for substitutional solutes in most metallic materials due to symmetric coordination and interstitials in 
Cu-type metals; not valid for interstitials in W-type metals): 𝑝𝑝 = − ⁄1 3 𝜎𝜎𝑥𝑥𝑥𝑥 + 𝜎𝜎𝑦𝑦𝑦𝑦 + 𝜎𝜎𝑧𝑧𝑧𝑧 .
It is possible (not done here since very lengthy) to show that external forces do not alter the stress 
fields.

Stress Fields of Straight Dislocations
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Plasticity of Metals and Intermetallics

Hydrostatic contribution: 𝑝𝑝 = − ⁄1 3 𝜎𝜎𝑥𝑥𝑥𝑥 + 𝜎𝜎𝑦𝑦𝑦𝑦 + 𝜎𝜎𝑧𝑧𝑧𝑧

Stress Fields of Straight Dislocations
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Plasticity of Metals and Intermetallics

The elastic distortion needs certain work/energy which can be obtained by integration over the distorted volume:
𝑊𝑊⨀

𝐿𝐿
= �

𝑟𝑟0

𝑅𝑅 𝜎𝜎𝜃𝜃𝑧𝑧2

2𝐺𝐺
2𝜋𝜋 𝑟𝑟 d𝑟𝑟 =

𝐺𝐺 𝑏𝑏2

4𝜋𝜋
ln
𝑅𝑅
𝑟𝑟0

𝑊𝑊⟘

𝐿𝐿
= �

𝑟𝑟0

𝑅𝑅
𝑟𝑟 d𝑟𝑟�

0

2𝜋𝜋
𝑑𝑑𝜃𝜃

1
2𝐺𝐺

𝜏𝜏𝑥𝑥𝑦𝑦2 +
1
2𝐸𝐸

𝜎𝜎𝑥𝑥𝑥𝑥2 + 𝜎𝜎𝑦𝑦𝑦𝑦2 − 2ν 𝜎𝜎𝑥𝑥𝑥𝑥𝜎𝜎𝑦𝑦𝑦𝑦 − 𝜎𝜎𝑧𝑧𝑧𝑧2

=
𝐺𝐺 𝑏𝑏2

4𝜋𝜋 1 − ν
ln
𝑅𝑅
𝑟𝑟0

=
1

1 − ν
𝑊𝑊⨀

𝐿𝐿
Both solutions diverge for 𝑟𝑟0 → 0 and 𝑅𝑅 → ∞. The dislocation has, therefore, only under certain circumstances a finite energy 
in terms of linear elastic theory. The cut-offs are typically set by physically relevant bounds: 𝑅𝑅 ∝ 𝑙𝑙/2 for the average distance 
between the dislocation and 𝑟𝑟0 ∝ 𝑏𝑏 as the typical size of the core of a dislocation:

Note the considerations from Ch. 4a: 𝜏𝜏c ≈
𝐺𝐺
2𝜋𝜋

For the screw dislocation, cut-off of the stress field might be determined by |𝜎𝜎𝜃𝜃𝑧𝑧 𝑟𝑟0 = 𝜏𝜏c with 𝑟𝑟0 ≈ 𝑏𝑏.

For the edge dislocation, cut-off of the stress field might be determined by |𝜎𝜎𝑟𝑟𝜃𝜃 𝑟𝑟0,𝜃𝜃=0 = 𝜏𝜏c with 𝑟𝑟0 ≈
𝑏𝑏
1−ν

≈ 1.5𝑏𝑏.

The upper limit for estimates is typically set at 4𝑏𝑏 since the solutions from the present Chapter need to be corrected for the cut-off.

Line Energy by Elastic Distortion
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Plasticity of Metals and Intermetallics

The core energy is in the order of 0.05 … 0.2 𝐺𝐺𝑏𝑏2 (various approaches needed; lower bound in closed placked
metals, upper bound in ionic crystals). This corresponds to 2 … 10 eV/nm (keep in mind approx. 1/40 eV of 
thermal energy 𝑘𝑘𝐵𝐵𝑇𝑇 at room temperature):

𝐺𝐺 ≈ 50 GPa, 𝑏𝑏 ≈ 2.5 Å:
0.1 𝐺𝐺 𝑏𝑏2 ≈ 1.5 nJ/m ≈ 2 eV/nm

This is much smaller compared to the line energy by the elastic distortion which is in the order of several 
10 eV/nm:

𝐺𝐺 ≈ 50 GPa, 𝑏𝑏 ≈ 2.5 Å, R ≈ 500 µm, 𝑟𝑟0 ≈ 𝑏𝑏, ν ≈ 0.3:
𝐺𝐺𝑏𝑏2

4𝜋𝜋 1 − ν ln
𝑅𝑅
𝑟𝑟0
≈ 5.2 nJ/m ≈ 32 eV/nm

Anyhow, the energy of the core changes periodically (due to the discrete, periodic nature of the crystal) with the 
position of the dislocation line; this is not the case for the elastic energy. Even though being smaller in 
magnitude, the periodic change of the core energy is the reason for the appearance of the Peierls potential 
(later in this Chapter).

Line Energy by Elastic Distortion
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Plasticity of Metals and Intermetallics

For the further course of the lecture, we roughly sum up in the following way:
𝑊𝑊⟘
𝐿𝐿

=
1

1 − ν
𝑊𝑊⨀
𝐿𝐿

≈
4
3
𝑊𝑊⨀
𝐿𝐿

Glissile (mixed) dislocation loops, therefore, have an oval shape (remember: always draw the arrow of the 
Burgers vector in the exam first and then the oval around it). The screw portions are typically of larger 
length in comparison to other segments. Even when anisotropy of the crystal structure and elastic 
constants are considered.

A significant energy reduction occurs when short Burgers vectors can be established (dislocation 
dissociation, dislocation reactions, etc.):

𝑊𝑊
𝐿𝐿 ∝ 𝐺𝐺 𝑏𝑏2

Line Energy by Elastic Distortion
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Plasticity of Metals and Intermetallics

In general, dislocations are „just“ displacement fields. These are no physical objects in the classical sense, 
a force can be applied to.
However, as we have seen there is work associated with the application of the slip operation to the body. 
This work is independent of the actual type of the dislocation since the slip operation is the same for the 
screw, edge or mixed dislocation as we have seen in the introduction slides.

From the work done on the body, can be transformed into a virtual force acting on the dislocation line:
�𝑭𝑭 𝐿𝐿 = 𝒃𝒃 � 𝝈𝝈 × 𝒔𝒔

(Peach-Köhler force)

Forces Acting on Dislocations

𝒃𝒃
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Plasticity of Metals and Intermetallics

Reference Frame

𝑥𝑥
𝑦𝑦

𝑧𝑧

𝑛𝑛𝑥𝑥

𝑛𝑛𝑧𝑧

𝑛𝑛𝑦𝑦

𝜎𝜎𝑥𝑥

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝑛𝑛𝑦𝑦

−𝑛𝑛𝑦𝑦

𝑛𝑛𝑥𝑥 −𝑛𝑛𝑥𝑥

𝜎𝜎𝑥𝑥
𝜎𝜎𝑧𝑧

𝜎𝜎𝑦𝑦
𝜏𝜏𝑦𝑦𝑥𝑥

𝜏𝜏𝑥𝑥𝑦𝑦

The normal vectors of the 
surfaces point out of the solid. 
The direction of the acting 
force automatically follows 
from the equation on the slide 
before.
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Plasticity of Metals and Intermetallics

Forces on the dislocation lines of initial examples (Ch. 4a):

𝒃𝒃 =
−𝑏𝑏
0
0

, 𝒔𝒔 =
0
1
0

,𝝈𝝈 =
0 0 −𝜏𝜏
0 0 0
−𝜏𝜏 0 0

, �𝑭𝑭 𝐿𝐿 =
−𝑏𝑏 𝜏𝜏

0
0

𝒃𝒃 � 𝝈𝝈 =
0
0
𝑏𝑏 𝜏𝜏

Forces Acting on Dislocations

�𝑭𝑭 𝐿𝐿𝑥𝑥 𝑦𝑦

𝑧𝑧

𝒃𝒃

initial state one full slip processmechanical loading under shear stress
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Plasticity of Metals and Intermetallics

Forces on the dislocation lines of initial examples (Ch. 4a):

𝒃𝒃 =
−𝑏𝑏
0
0

, 𝒔𝒔 =
−1
0
0

,𝝈𝝈 =
0 0 −𝜏𝜏
0 0 0
−𝜏𝜏 0 0

, �𝑭𝑭 𝐿𝐿 =
0

−𝑏𝑏 𝜏𝜏
0

𝒃𝒃 � 𝝈𝝈 =
0
0
𝑏𝑏 𝜏𝜏

Forces Acting on Dislocations

𝑥𝑥
𝑦𝑦

𝑧𝑧

�𝑭𝑭 𝐿𝐿 𝒃𝒃

initial state one full slip processmechanical loading under shear stress
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Plasticity of Metals and Intermetallics

Forces on the dislocation lines of initial examples (Ch. 4a):

𝒃𝒃 =
−𝑏𝑏
0
0

, 𝒔𝒔 =
− cos𝜑𝜑

sin𝜑𝜑
0

,𝝈𝝈 =
0 0 −𝜏𝜏
0 0 0
−𝜏𝜏 0 0

, �𝑭𝑭 𝐿𝐿 =
−𝑏𝑏 𝜏𝜏 sin𝜑𝜑
−𝑏𝑏 𝜏𝜏 cos𝜑𝜑

0

𝒃𝒃 � 𝝈𝝈 =
0
0
𝑏𝑏 𝜏𝜏

Forces Acting on Dislocations

top view onto the slip plane:

𝑧𝑧𝑥𝑥

𝑦𝑦

𝒔𝒔
𝜑𝜑

𝒔𝒔(𝜑𝜑)

�𝑭𝑭 𝐿𝐿 (𝜑𝜑)

𝒃𝒃
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Plasticity of Metals and Intermetallics

As known from the introduction slides, shear stress within the slip plane and along the slip direction leads 
to glide motion of the dislocation. The virtual glide (line) force on the dislocation line is 𝑏𝑏 𝜏𝜏. The magnitude 
of the glide force only depends on the shear stress within the slip system. It is independent of the character 
of the dislocation (since the same deformation is performed)!

Forces Acting on Dislocations

top view onto the slip plane:

𝑧𝑧𝑥𝑥

𝑦𝑦

𝑏𝑏 𝜏𝜏

𝒃𝒃

𝒔𝒔

23



Plasticity of Metals and Intermetallics

Normal loading of the edge dislocation (𝜎𝜎 along 𝑥𝑥) leads to a climb (line) force of 𝑏𝑏 𝜎𝜎 along 𝑧𝑧:

𝒃𝒃 =
−𝑏𝑏
0
0

, 𝒔𝒔 =
0
1
0

,𝝈𝝈 =
𝜎𝜎 0 0
0 0 0
0 0 0

, �𝑭𝑭 𝐿𝐿 =
0
0

−𝑏𝑏 𝜎𝜎

Forces Acting on Dislocations

top view onto the slip plane:

𝑧𝑧𝑥𝑥

𝑦𝑦 𝑏𝑏 𝜎𝜎

𝜎𝜎
𝒔𝒔

In order to achieve the 
elongation of the sample along 
the normal load, atoms have to 
diffuse from the surfaces of the 
body to the extra half-plane in 
order to enlarge this extra half-
plane.

𝒃𝒃
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Plasticity of Metals and Intermetallics

Glide/Slip

Climb

Dislocation Motion

motion ↕

motion ↔

25

J. Freudenberger and L. Schultz: „Physikalische Werkstoffeigenschaften“ (2004)
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Plasticity of Metals and Intermetallics

Shear load of a screw dislocation in a slip plane other than the current slip might induce a change of the 
slip plane by cross-slip; the cross-slip (line) force amounts to 𝑏𝑏 𝜏𝜏:

𝒃𝒃 =
−𝑏𝑏
0
0

, 𝒔𝒔 =
−1
0
0

,𝝈𝝈 =
0 𝜏𝜏 0
𝜏𝜏 0 0
0 0 0

, �𝑭𝑭 𝐿𝐿 =
0
0

−𝑏𝑏 𝜏𝜏

Forces Acting on Dislocations

top view onto the slip plane:

𝑧𝑧𝑥𝑥

𝑦𝑦 𝑏𝑏 𝜏𝜏

𝜏𝜏

𝒃𝒃

𝒔𝒔
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Plasticity of Metals and Intermetallics

The following dislocation with Burgers vector along 𝑥𝑥 is subdivided in two segments: (1) within 𝑥𝑥-𝑧𝑧 and (2) 
within 𝑥𝑥-𝑦𝑦:

𝒃𝒃 =
−𝑏𝑏
0
0

, 𝒔𝒔𝟏𝟏 =
0
0
−1

, 𝒔𝒔𝟐𝟐 =
0
1
0

,𝝈𝝈 =
0 0 −𝜏𝜏
0 0 0
−𝜏𝜏 0 0

�𝑭𝑭𝟏𝟏
𝐿𝐿 =

0
0
0

und �𝑭𝑭𝟐𝟐
𝐿𝐿 =

−𝑏𝑏 𝜏𝜏
0
0

Forces Acting on Dislocations

𝑥𝑥
𝑦𝑦

𝑧𝑧

Segment 1 has no 
resulting line force.

�𝑭𝑭𝟐𝟐
𝐿𝐿𝒃𝒃
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Plasticity of Metals and Intermetallics

The following dislocation with Burgers vector along 𝑥𝑥 is subdivided in two segments: (1) within 𝑥𝑥-𝑧𝑧 and (2) 
within 𝑥𝑥-𝑦𝑦:

𝒃𝒃 =
−𝑏𝑏
0
0

, 𝒔𝒔𝟐𝟐 =
− sin𝜑𝜑
cos𝜑𝜑

0
,𝝈𝝈 =

0 0 −𝜏𝜏
0 0 0
−𝜏𝜏 0 0

�𝑭𝑭𝟐𝟐
𝐿𝐿 =

−𝑏𝑏 𝜏𝜏 cos𝜑𝜑
−𝑏𝑏 𝜏𝜏 sin𝜑𝜑

0

Forces Acting on Dislocations

Since there is no force on segment 1, 
segment 2 starts to rotate around the 
segment 1 (pole). By every revolution, 
one slip operation is applied the body. 
By continuous rotation of the second 
dislocation segments, a displacement 
of the upper half of the crystal against 
the lower one of several Burgers 
vectors in length can be achieved with 
just one dislocation!

𝒔𝒔

𝜑𝜑

𝒔𝒔(𝜑𝜑)

�𝑭𝑭 𝐿𝐿 (𝜑𝜑)

𝒃𝒃top view onto the slip plane:

𝑧𝑧𝑥𝑥

𝑦𝑦
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Plasticity of Metals and Intermetallics

As we have seen, a proper external normal stress leads to a climb force on edge dislocations or on edge 
components of dislocations.

Additionally, the climb process is non-conservative. The direction of movement, the Burgers vector and the 
dislocation line vector form a finite triple product. Hence, certain fluxes of atoms and vacancies are 
necessary to obtain the movement:

Chemical Force on Dislocations

𝜎𝜎𝑥𝑥

𝐹𝐹𝑦𝑦
𝐿𝐿 = 𝜎𝜎𝑥𝑥 𝑏𝑏

The absorption or emission of 
vacancies due to dislocation 
motion, reduces or increases the 
vacancy concentration in the 
vicinity of the dislocation!
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Plasticity of Metals and Intermetallics

In turn, this means that any vacancy concentration different from thermodynamic equilibrium leads to a 
climb force on the dislocation since it acts as vacancy source or sink:

Chemical Force on Dislocations

𝑥𝑥 > 𝑥𝑥0

𝑓𝑓𝑦𝑦
𝐿𝐿

=
𝑏𝑏 𝑘𝑘B 𝑇𝑇
Ω ln(

𝑥𝑥
𝑥𝑥0

)

𝑥𝑥 < 𝑥𝑥0

using 𝑥𝑥0 = exp ∆𝑆𝑆V
P

𝑖𝑖B
� exp − ∆𝐻𝐻V

F

𝑖𝑖B 𝑇𝑇
(see Ch. 3d) and 𝑥𝑥 = 𝑥𝑥0 𝑒𝑒

− 𝐹𝐹Ω
𝑏𝑏 𝑘𝑘B 𝑇𝑇 until 𝐹𝐹 (Peach-Köhler) 

becomes compensated by 𝑓𝑓 to achieve mechanical equilibrium.

vacancy concentration 
away from the dislocation:

This factor is intuitively underestimated! The 
quenched in vacancy concentration can be 
tremendous as we will see with the Bardeen-
Herring source.
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Plasticity of Metals and Intermetallics

The same principle can of course be transferred to solute atoms as well since solubility at the dislocation is 
altered by the distortion field. Hence, solute atoms cause forces on dislocations.

Chemical Force on Dislocations

𝑥𝑥 > 𝑥𝑥0

𝑓𝑓𝑦𝑦
𝐿𝐿

=
𝑏𝑏 𝑘𝑘𝐵𝐵 𝑇𝑇
Ω ln(

𝑥𝑥
𝑥𝑥0

)

𝑥𝑥 < 𝑥𝑥0
vacancy concentration 
away from the dislocation:
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Plasticity of Metals and Intermetallics

Line Tension

We have seen that the total strain energy of a dislocation scales with 𝑊𝑊 ∝ 𝐺𝐺 𝑏𝑏2 𝐿𝐿.
If a straight dislocation gets longer by d𝐿𝐿, the total energy 𝑊𝑊 increases. Hence, there is a back force 
restricting the extension of line length:

𝑇𝑇 = −
d𝑊𝑊
d𝐿𝐿 ∝ 𝐺𝐺 𝑏𝑏2

32



Plasticity of Metals and Intermetallics

Under external load 𝜏𝜏, Peach-Köhler force may 
lead to bending of an incremental part dΘ of the 
dislocation to a radius 𝑅𝑅.
Assuming only glide forces, the Peach-Köhler
force simplifies to d𝐹𝐹 = 𝛼𝛼 𝜏𝜏 𝑏𝑏 d𝐿𝐿.
Line tension 𝑇𝑇 dΘ = 𝛼𝛼 𝐺𝐺 𝑏𝑏2 dΘ counteracts the 
bending processes.
The shear stress needed to bend to a local 
equilibrium radius of 𝑅𝑅:

𝜏𝜏 𝑏𝑏 𝑅𝑅 dΘ = 𝛼𝛼 𝐺𝐺 𝑏𝑏2 dΘ

𝜏𝜏 =
𝛼𝛼 𝐺𝐺 𝑏𝑏
𝑅𝑅

Line Tension

d𝐹𝐹 = 𝜏𝜏 𝑏𝑏 d𝐿𝐿 = 𝜏𝜏 𝑏𝑏 𝑅𝑅 dΘ

𝑇𝑇 = 𝛼𝛼 𝐺𝐺 𝑏𝑏2

2 𝑇𝑇 sin
dΘ
2 ≈ 𝑇𝑇 dΘ

= 𝛼𝛼 𝐺𝐺 𝑏𝑏2 dΘ

dΘ

d𝐿𝐿

𝑅𝑅

𝑅𝑅
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Plasticity of Metals and Intermetallics

In order to achieve high curvature (= small 
radius of curvature 𝑅𝑅) in the dislocation line, 
high stresses are needed.
Below a critical curvature (above the 
equilibrium radius of curvature), the 
Peach-Köhler force leads to extension of 
the dislocation line because it surpasses 
the back stress by line tension.

Line tension

𝜏𝜏 𝑏𝑏 𝑅𝑅 dΘ

𝛼𝛼 𝐺𝐺 𝑏𝑏2
𝛼𝛼 𝐺𝐺 𝑏𝑏2 dΘ

𝑑𝑑Θ

d𝐿𝐿

𝑅𝑅

𝑅𝑅
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Plasticity of Metals and Intermetallics

Of course, the major contribution arises from the length dependence of total energy of the 
dislocation. This gives rise to the line tension 𝑇𝑇 = −𝑑𝑑𝑑𝑑

𝑑𝑑𝐿𝐿
∝ 𝐺𝐺 𝑏𝑏2 as shown on the slides before. 

Anyhow, the concept differs significantly from lines as known from mechanical engineering due 
to the following aspects:

The line energy depends on the character of the dislocation 𝛽𝛽, e.g. 𝑊𝑊 = 𝑊𝑊(𝛽𝛽) with much lower line 
energy for screw over edge dislocation segments. During bending of the dislocation line, the character 
changes along the line length d𝐿𝐿. There should be a strong tendency to preferably form screw 
segments. E.g. the line tension 𝑇𝑇 of a screw segment is approx. 4 times larger than for edge 
segments at a Poisson’s ratio of ~0.3.
Dislocation segments interact with each other! The interaction of the individual segments is usually not 
considered at all.

Line Tension
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Plasticity of Metals and Intermetallics

Summary

The energy of a dislocation has contributions by the dislocation core 
and by the elastic displacement field. The latter scales with the 
stiffness and the square of the length of the Burgers vector.
External stresses lead to virtual forces on the dislocation lines. The 
stresses can lead to glide/slip, climb, cross-slip or rotation motion of 
dislocations.
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