Microstructure – Fluid Dynamics
Contact person: Dr.-Ing. Fei Wang, Dr. Haodong Zhang
Research
By employing the phase-field method, the research of the group concentrates on the microstructural evolution process, where both fluid dynamics and diffusion are present. Two different phase-field approaches, namely Cahn-Hilliard and Allen-Cahn models, coupled with the Navier-Stokes equations, are adopted to model particular physical problems. The following research areas are considered.
Wetting
Different kinds of wetting phenomena are considered, such as reactive wetting in the process of soldering, inertial wetting on patterned structures, and wetting transitions in dependence of the temperature/composition.
Interfacial instability
When we open a water tap, the water trickles down and breaks apart into a chain of droplets, which is a typical interfacial instability in fluid dynamics. Similar to this, a thin liquid film may also break up into droplets or liquid rings. The problem becomes more complex if the liquid phase is in contact with a solid phase, where the wetting mechanism has to be considered. For this topic, we scrutinize the interfacial evolutions and instabilities by developing theoretical models and performing numerical simulations based on the phase-field methods.
Formation of porous structures from polymer solutions
Porous structures can be formed from polymer solutions via spinodal decomposition. During the structural formation process, two stages are assumed: At the first stage, the solution is considered to be a liquid phase, where the surface tension and phase transition dominate the microstructural evolution. At the second stage, gelation takes place, where the droplets resulting from the phase separation are solid-like. Here, viscoelastic properties have to be taken into account. We aim to develop a thermodynamically consistent phase-field model for this structure formation process.
Solidification
We adopt the phase-field model to study phase transition, such as dendrite growth, monotectic reaction, peritectic reaction, and eutectic reaction, where diffusion and convection are involved.
Rigid body motion
In contrast to the soft matter particles with finite deformations in the formation process of porous structures, we here consider rigid body particles, where the deformation is zero. For this topic, a phase-field model is currently being developed.
Name | Function |
---|---|
Dargahi Noubary, Kaveh | Research assistant |
Farzaneh Kalourazi, Saeideh | Research Assistant |
Zhang, Haodong | Research assistant |
3 additional persons visible within KIT only. |
Cai, Y.; Wang, F.; Zhang, H.; Nestler, B.
2024. Journal of Physics: Condensed Matter, 36, Article no: 495702. doi:10.1088/1361-648X/ad7660
Aurbach, F.; Wang, F.; Nestler, B.
2024. The Journal of Chemical Physics, 161 (16), Art.-Nr. : 164708
Cai, Y.; Wang, F.; Nestler, B.
2024. Advanced Engineering Materials, 26 (17), 2302082. doi:10.1002/adem.202302082
Zhang, H.; Wang, F.; Nestler, B.
2024. The Journal of Chemical Physics, 161 (4). doi:10.1063/5.0203527
Wang, F.; Nestler, B.
2024. arxiv. doi:10.5445/IR/1000176219
Zhang, H.; Zhang, H.; Wang, F.; Nestler, B.
2024. ChemPhysChem, Art.-Nr.: 202400086. doi:10.1002/cphc.202400086
Zhang, H.; Wang, F.; Nestler, B.
2024. Journal of Computational Physics, 505, 112907. doi:10.1016/j.jcp.2024.112907
Wang, F.; Nestler, B.
2024. Physical Review Letters, 132 (12), Art.-Nr.: 126202. doi:10.1103/PhysRevLett.132.126202
Wu, Y.; Wang, F.; Zheng, S.; Nestler, B.
2024. Soft Matter, 20 (7), 1523–1542. doi:10.1039/D3SM01553J
Zhang, H.; Wang, F.; Ratke, L.; Nestler, B.
2024. Physical Review E, 109 (2), 024208. doi:10.1103/PhysRevE.109.024208
Arya, P.; Wu, Y.; Wang, F.; Wang, Z.; Cadilha Marques, G.; Levkin, P. A.; Nestler, B.; Aghassi-Hagmann, J.
2024. Langmuir, 40 (10), 5162–5173. doi:10.1021/acs.langmuir.3c03297
Wu, Y.; Urrutia Gómez, J. E.; Zhang, H.; Wang, F.; Levkin, P. A.; Popova, A. A.; Nestler, B.
2024. Droplet, 3 (1), Art.-Nr. e94. doi:10.1002/dro2.94
Zhang, H.; Wu, Y.; Wang, F.; Nestler, B.
2023. The Journal of Chemical Physics, 159 (16). doi:10.1063/5.0168394
Cai, Y.; Wang, F.; Czerny, A.; Seifert, H. J.; Nestler, B.
2023. Acta Materialia, 258, 119178
Cai, Y.; Wang, F.; Czerny, A.; Seifert, H. J.; Nestler, B.
2023. Acta Materialia, 258, Art.-Nr.: 119178. doi:10.1016/j.actamat.2023.119178
Wang, F.; Zhang, H.; Wu, Y.; Nestler, B.
2023. Journal of Fluid Mechanics, 970, Art.Nr.: A17. doi:10.1017/jfm.2023.561
Yang, Q.; Tang, F.; Wang, F.; Tang, J.; Fan, Z.; Ma, T.; Su, Y.; Xue, J.
2023. Measurement: Journal of the International Measurement Confederation, 218, Art.Nr.: 113220. doi:10.1016/j.measurement.2023.113220
Wang, F.; Wu, Y.; Nestler, B.
2023. Advanced Materials, 35 (25), Art.-Nr.: 2210745. doi:10.1002/adma.202210745
Zhang, H.; Wang, F.; Nestler, B.
2023. Physical review / B, 108 (5), Art.-Nr.: 054121. doi:10.1103/PhysRevE.108.054121
Bohr, S. J.; Wang, F.; Metze, M.; Vukušić, J. L.; Sapalidis, A.; Ulbricht, M.; Nestler, B.; Barbe, S.
2023. Frontiers in Sustainability, 4, 1093911
Bohr, S. J.; Wang, F.; Metze, M.; Vukušić, J. L.; Sapalidis, A.; Ulbricht, M.; Nestler, B.; Barbe, S.
2023. Frontiers in Sustainability, 4, Art.-Nr.: 1093911. doi:10.3389/frsus.2023.1093911
Schilling, M. P.; El Khaled El Faraj, R.; Urrutia Gómez, J. E.; Sonnentag, S. J.; Wang, F.; Nestler, B.; Orian-Rousseau, V.; Popova, A. A.; Levkin, P. A.; Reischl, M.
2023. Scientific Reports, 13, Article no: 5107. doi:10.1038/s41598-023-32144-z
Wiedmann, J. J.; Demirdögen, Y. N.; Schmidt, S.; Kuzina, M. A.; Wu, Y.; Wang, F.; Nestler, B.; Hopf, C.; Levkin, P. A.
2023. Small, 19 (9), Art.Nr. 2204512. doi:10.1002/smll.202204512
Farzaneh Kalourazi, S.; Wang, F.; Zhang, H.; Selzer, M.; Nestler, B.
2022. Journal of Physics: Condensed Matter, 34 (44), Art.-Nr.: 444003. doi:10.1088/1361-648X/ac8b4d
Zhang, H.; Wang, F.; Nestler, B.
2022. Langmuir, 38 (22), 6882–6895. doi:10.1021/acs.langmuir.2c00308
Wu, Y.; Wang, F.; Huang, W.; Selzer, M.; Nestler, B.
2022. Physical Review Fluids, 7 (5), Art.-Nr.: 054004. doi:10.1103/PhysRevFluids.7.054004
Laxmipathy, V. P.; Wang, F.; Selzer, M.; Nestler, B.
2022. Metals, 12 (3), Art.-Nr.: 376. doi:10.3390/met12030376
Wu, Y.; Kuzina, M.; Wang, F.; Reischl, M.; Selzer, M.; Nestler, B.; Levkin, P. A.
2022. Journal of Colloid and Interface Science, 606, 1077–1086. doi:10.1016/j.jcis.2021.08.029
Dong, Z.; Cui, H.; Zhang, H.; Wang, F.; Zhan, X.; Mayer, F.; Nestler, B.; Wegener, M.; Levkin, P. A.
2021. Nature Communications, 12 (1), Art:nr. 247. doi:10.1038/s41467-020-20498-1
Reder, M.; Schneider, D.; Wang, F.; Daubner, S.; Nestler, B.
2021. International Journal for Numerical Methods in Fluids, 93 (8), 2486–2507. doi:10.1002/fld.4984
Wang, F.; Ratke, L.; Zhang, H.; Altschuh, P.; Nestler, B.
2021. Journal of sol gel science and technology, 99 (1), 273. doi:10.1007/s10971-021-05565-3
Laxmipathy, V. P.; Wang, F.; Selzer, M.; Nestler, B.
2021. Acta materialia, 204, Art.-Nr.: 116497. doi:10.1016/j.actamat.2020.116497
Zhang, H.; Wu, Y.; Wang, F.; Guo, F.; Nestler, B.
2021. Langmuir, 37 (17), 5275–5281. doi:10.1021/acs.langmuir.1c00275
Scheiger, J. M.; Kuzina, M. A.; Eigenbrod, M.; Wu, Y.; Wang, F.; Heißler, S.; Hardt, S.; Nestler, B.; Levkin, P. A.
2021. Advanced Materials, 33 (23), Art.-Nr.: 2100117. doi:10.1002/adma.202100117
Hoffrogge, P. W.; Mukherjee, A.; Nani, E. S.; Amos, P. G. K.; Wang, F.; Schneider, D.; Nestler, B.
2021. Physical review / E, 103 (3), Article no: 033307. doi:10.1103/PhysRevE.103.033307
Wang, F.; Nestler, B.
2021. Journal of Chemical Physics, 154 (9), Art.-Nr.: 094704. doi:10.1063/5.0044914
Laxmipathy, V. P.; Wang, F.; Selzer, M.; Nestler, B.
2020. International journal of heat and mass transfer, 159, Art.-Nr. 120096. doi:10.1016/j.ijheatmasstransfer.2020.120096
Wu, Y.; Wang, F.; Ma, S.; Selzer, M.; Nestler, B.
2020. Soft matter, 16 (26), 6115–6127. doi:10.1039/d0sm00196a
Wang, F.; Ratke, L.; Zhang, H.; Altschuh, P.; Nestler, B.
2020. Journal of sol gel science and technology, 94 (1), 356–374. doi:10.1007/s10971-020-05238-7
Pavan Laxmipathy, V.; Wang, F.; Selzer, M.; Nestler, B.; Ankit, K.
2019. Computational materials science, 170, Art.-Nr. 109196. doi:10.1016/j.commatsci.2019.109196
Wang, F.; Altschuh, P.; Ratke, L.; Zhang, H.; Selzer, M.; Nestler, B.
2019. Advanced materials, 31 (26), Art.Nr. 1806733. doi:10.1002/adma.201806733
Wu, Y.; Wang, F.; Selzer, M.; Nestler, B.
2019. Langmuir, 35 (25), 8500–8516. doi:10.1021/acs.langmuir.9b01362
Cai, Y.; Wang, F.; Selzer, M.; Nestler, B.
2019. Modelling and simulation in materials science and engineering, 27 (6), Art.-Nr.: 065010. doi:10.1088/1361-651X/ab2351
Wang, F.; Altschuh, P.; Matz, A. M.; Heimann, J.; Matz, B. S.; Nestler, B.; Jost, N.
2019. Acta materialia, 170, 138–154. doi:10.1016/j.actamat.2019.03.008
Wang, F.; Reiter, A.; Kellner, M.; Brillo, J.; Selzer, M.; Nestler, B.
2018. Acta materialia, 146, 106–118. doi:10.1016/j.actamat.2017.12.015
Santoki, J.; Schneider, D.; Selzer, M.; Wang, F.; Kamlah, M.; Nestler, B.
2018. Modelling and simulation in materials science and engineering, 26 (6), 065013. doi:10.1088/1361-651X/aad20a
Wang, F.; Matz, A. M.; Tschukin, O.; Heimann, J.; Mocker, B. S.; Nestler, B.; Jost, N.
2017. Advanced engineering materials, 19 (10), Art.Nr. 1700063. doi:10.1002/adem.201700063
Wang, F.
2017. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000071294
Wang, F.; Nestler, B.
2016. Scripta materialia, 113, 167–170. doi:10.1016/j.scriptamat.2015.11.002
Wang, F.; Nestler, B.
2015. Acta materialia, 95 (2), 65–73. doi:10.1016/j.actamat.2015.05.002
Wang, F.; Ben Said, M.; Selzer, M.; Nestler, B.
2015. Journal of materials science, 51 (4), 1820–1828. doi:10.1007/s10853-015-9600-1
Wang, F.; Klinski-Wetzel, K. von; Mukherjee, R.; Nestler, B.; Heilmaier, M.
2015. Metallurgical and materials transactions / A, 46 (4), 1756–1766. doi:10.1007/s11661-015-2745-3
Wang, F.; Selzer, M.; Nestler, B.
2015. Physica D: Nonlinear Phenomena, 307, 82–96. doi:10.1016/j.physd.2015.06.001
Wang, F.; Mukherjee, R.; Selzer, M.; Nestler, B.
2014. Physics of fluids, 26 (12), Art.Nr. 1.4902355. doi:10.1063/1.4902355