Data-driven Modelling and Artificial Intelligence

The group “Data-driven Modelling and Artificial Intelligence” develops, provides, and integrates methods of Artificial Intelligence (AI) and Machine Learning (ML) in applications of materials science and mechanics.

Contact person: Dr.-Ing. Arnd Koeppe

BildIAM-MMS

Research

The group “Data-driven Modelling and Artificial Intelligence” at the IAM-MMS specialises in developing, providing, and integrating artificial intelligence (AI) methods for applications in materials science and mechanics. In cooperation with the other groups of the IAM-MMS and within the framework of collaborations at the KIT and external partners, we provide solutions for the characterisation, analysis, and synthesis of materials, especially microstructures, with material behaviour ranging from fracture mechanics to biological processes. In addition to experimental data, e. g., from imaging processes, many applications also use simulation methods such as the finite element method (FEM) or finite volume method (FVM) to generate additional data of physical systems. For this purpose, physics-based and data-driven methods are combined in intelligent elements and solvers, e. g., to enable a dimensional reduction and an efficient computation. The AI and ML methods include supervised, unsupervised, reinforcement, and active learning, ranging from principal component analysis to deep neural networks, tailored for regression, classification, and clustering tasks. In combination with research data management, optimisation algorithms allow the implementation of design-of-experiments processes, e. g., with Bayesian optimisation. Our interdisciplinary scope includes both data-science and engineering expertise, which facilitates the development of explainable and physics-informed AI methods. A data platform and efficient research data management are essential for effective implementation. Therefore, the group develops the open-source Python library CIDS (Computational Intelligence and Data Science) for applications of AI in materials science and mechanics. This library also forms the basis for the AI pillar of the research data platform Kadi4Mat: KadiAI. This direct integration into Kadi efficiently couples data and physics and enables best-practice workflows that provide AI solutions for physical problems.

Research focus

  • Explainable and physics-informed machine learning models for experimental studies and simulations of materials

  • Coupling data-driven models with physics-based simulation software

  • Integration and interaction of AI methods and research data management for active learning and automated experimental design

Team
Name Tätigkeit
Research assistant
Group Leader
Research assistant
1 additional person visible within KIT only.
Associated team members
Name Tätigkeit

Publikationsliste


2024
From Powder to Pouch Cell: Setting up a Sodium‐Ion Battery Reference System Based on Na3V2(PO4)3/C and Hard Carbon
Stüble, P.; Müller, C.; Bohn, N.; Müller, M.; Hofmann, A.; Akçay, T.; Klemens, J.; Koeppe, A.; Kolli, S.; Rajagopal, D.; Geßwein, H.; Schabel, W.; Scharfer, P.; Selzer, M.; Binder, J. R.; Smith, A.
2024. Batteries & Supercaps, 7 (12), e202400406. doi:10.1002/batt.202400406
A U-Net-based self-stitching method for generating periodic grain structures
Ji, Y.; Koeppe, A.; Altschuh, P.; Griem, L.; Rajagopal, D.; Nestler, B.
2024. Physica Scripta, 99 (7), Art.-Nr.: 076010. doi:10.1088/1402-4896/ad52cf
Experimental evaluation of phase-field-based load-specific shape optimization of nature-inspired porous structures
Wallat, L.; Koeppe, A.; Selzer, M.; Seiler, M.; Poehler, F.; Nestler, B.
2024. Materials Today Communications, 38, 108088. doi:10.1016/j.mtcomm.2024.108088
Towards automatic feature extraction and sample generation of grain structure by variational autoencoder
Ji, Y.; Koeppe, A.; Altschuh, P.; Rajagopal, D.; Zhao, Y.; Chen, W.; Chen, W.; Zhang, Y.; Zheng, Y.; Nestler, B.
2024. Computational Materials Science, 232, Art.-Nr.: 112628. doi:10.1016/j.commatsci.2023.112628
Dual-porosity approach: heat transfer and heat storage processes in porous media
Kneer, A.; August, A.; Alesi, E.; Reiter, A.; Wirtz, M.; Koeppe, A. H.; Barbe, S.; Nestler, B.
2024. Mathematical and computer modelling of dynamical systems, 30 (1), 202–227. doi:10.1080/13873954.2024.2328663
2023
An Interdisciplinary Approach to Manage Materials Data with Kadi4Mat and Chemotion
Altschuh, P.; Bräse, S.; Hartmann, T.; Jaeger, D.; Jung, N.; Koeppe, A.; Krauss, P.; Leister, C.; Nestler, B.; Schiefer, G.; Schreiber, C.; Selzer, M.; Starmann, M.; Tosato, G.
2023. E-Science-Tage 2023: Empower Your Research – Preserve Your Data. Ed.: Vincent Heuveline, Nina Bisheh, Philipp Kling, 264–269, heiBOOKS. doi:10.11588/heibooks.1288.c18086
Identification of Lithium Compounds on Surfaces of Lithium Metal Anode with Machine-Learning-Assisted Analysis of ToF-SIMS Spectra
Zhao, Y.; Otto, S.-K.; Lombardo, T.; Henss, A.; Koeppe, A.; Selzer, M.; Janek, J.; Nestler, B.
2023. ACS Applied Materials & Interfaces, 15 (43), 50469 – 50478. doi:10.1021/acsami.3c09643
Data‐Driven Virtual Material Analysis and Synthesis for Solid Electrolyte Interphases
Rajagopal, D.; Koeppe, A.; Esmaeilpour, M.; Selzer, M.; Wenzel, W.; Stein, H.; Nestler, B.
2023. Advanced Energy Materials, 13 (40), Art.-Nr.: 2301985. doi:10.1002/aenm.202301985
Characterization of porous membranes using artificial neural networks
Zhao, Y.; Altschuh, P.; Santoki, J.; Griem, L.; Tosato, G.; Selzer, M.; Koeppe, A.; Nestler, B.
2023. Acta Materialia, 253, Art.-Nr.: 118922. doi:10.1016/j.actamat.2023.118922
A U-Net-Based Self-Stitching Method for Generating Periodic Grain Structures
Ji, Y.; Koeppe, A.; Altschuh, P.; Griem, L.; Rajagopal, D.; Nestler, B.; Chen, W.; Zhang, Y.; Zheng, Y.
2023. doi:10.48550/arXiv.2310.20379
An interdisciplinary approach to data management
Altschuh, P.; Bräse, S.; Hartmann, T.; Jaeger, D.; Jung, N.; Krauss, P.; Leister, C.; Nestler, B.; Schiefer, G.; Schreiber, C.; Selzer, M.; Starman, M.; Tosato, G.; Koeppe, A.
2023. E-Science-Tage 2023: Empower Your Research – Preserve Your Data (2023), Heidelberg, Germany, March 1–3, 2023. doi:10.11588/heidok.00033126
Lattice Metamaterials with Mesoscale Motifs: Exploration of Property Charts by Bayesian Optimization
Kulagin, R.; Reiser, P.; Truskovskyi, K.; Koeppe, A.; Beygelzimer, Y.; Estrin, Y.; Friederich, P.; Gumbsch, P.
2023. Advanced Engineering Materials, 25 (13), Art.-Nr.: 2300048. doi:10.1002/adem.202300048
2022
Explainable Artificial Intelligence for Mechanics: Physics-Explaining Neural Networks for Constitutive Models
Koeppe, A.; Bamer, F.; Selzer, M.; Nestler, B.; Markert, B.
2022. Frontiers in Materials, 8, Art.-Nr.: 824958. doi:10.3389/fmats.2021.824958
Machine Learning Assisted Design of Experiments for Solid State Electrolyte Lithium Aluminum Titanium Phosphate
Zhao, Y.; Schiffmann, N.; Koeppe, A.; Brandt, N.; Bucharsky, E. C.; Schell, K. G.; Selzer, M.; Nestler, B.
2022. Frontiers in Materials, 9, Art.-Nr.: 821817. doi:10.3389/fmats.2022.821817
2021
An artificial intelligence approach to model nonlinear continua by intelligent meta‐elements
Koeppe, A.; Bamer, F.; Markert, B.
2021. PAMM, 20 (Special Issue), e202000300. doi:10.1002/pamm.202000300
Workflow concepts to model nonlinear mechanics with computational intelligence
Koeppe, A.; Bamer, F.; Selzer, M.; Nestler, B.; Markert, B.
2021. PAMM, 21 (Special Issue), e202100238. doi:10.1002/pamm.202100238