Beyond conventional materials - metamaterials and 3D structured components

  • type: Vorlesung (V)
  • chair: KIT-Fakultäten - KIT-Fakultät für Maschinenbau - Institut für Angewandte Materialien - Zuverlässigkeit und Mikrostruktur
    KIT-Fakultäten - KIT-Fakultät für Maschinenbau
  • semester: WS 24/25
  • time: Mi. 23.10.2024
    09:45 - 11:15, wöchentlich


    Mi. 30.10.2024
    09:45 - 11:15, wöchentlich

    Mi. 06.11.2024
    09:45 - 11:15, wöchentlich

    Mi. 13.11.2024
    09:45 - 11:15, wöchentlich

    Mi. 20.11.2024
    09:45 - 11:15, wöchentlich

    Mi. 27.11.2024
    09:45 - 11:15, wöchentlich

    Mi. 04.12.2024
    09:45 - 11:15, wöchentlich

    Mi. 11.12.2024
    09:45 - 11:15, wöchentlich

    Mi. 18.12.2024
    09:45 - 11:15, wöchentlich

    Mi. 08.01.2025
    09:45 - 11:15, wöchentlich

    Mi. 15.01.2025
    09:45 - 11:15, wöchentlich

    Mi. 22.01.2025
    09:45 - 11:15, wöchentlich

    Mi. 29.01.2025
    09:45 - 11:15, wöchentlich

    Mi. 05.02.2025
    09:45 - 11:15, wöchentlich

    Mi. 12.02.2025
    09:45 - 11:15, wöchentlich


  • lecturer:

    Jun.-Prof. Dr. Jens Bauer

  • sws: 2
  • lv-no.: 2186100
  • information:

    Presence/online mixed
    Detailed information - KLICK HERE

Contents

Conventional materials development focuses on adjusting the chemistry and microstructure of solids. Metamaterials go beyond these classical approaches. They are artificial materials made of spatially structured building blocks, like lattice architectures. The integration of these rational architectures at the material level provides metamaterials with unique, unconventional properties that are inaccessible through classical material design.

The lecture covers the basic mechanics of different metamaterial architectures, discusses design principles and relevant manufacturing techniques from the macro to the nanoscale, as well as their interdependence, and looks at the latest application scenarios in medical technology, aerospace, microsystems technology and mobility.

The students learn

  • the design of beam-, shell- and plate-based spatial architectures, for behaviors such as extreme strength & stiffness, programmable/adaptive behavior and negative effective properties.
  • the mathematical description and prediction of the mechanical behavior of such architectures.
  • the fundamentals of relevant manufacturing processes, including foaming, assembly and 3D printing, and their influence on design and materials.
  • the relationships between architecture and scale and how micro- and nanoscale architectures can exploit extreme physical size effects.

Previous knowledge of mechanics, physics and materials science recommended

Attendance time: 22.5 hours

Self-study: 97.5 hours

Oral examination (approx. 30 min)

no aids

Lecture languageEnglish
References

Gibson, L. J. & Ashby, M. F. Cellular Solids: Structure and properties. (Cambridge Univ. Pr., 2001).

Fleck, N. A., Deshpande, V. S. & Ashby, M. F. Micro-architectured materials: past, present and future. Proc. R. Soc. A Math. Phys. Eng. Sci. 466, 2495-2516 (2010).

Bauer, J. et al. Nanolattices: An Emerging Class of Mechanical Metamaterials. Adv. Mater. 29, 1701850 (2017).

Jiao, P., Mueller, J., Raney, J. R., Zheng, X. (Rayne) & Alavi, A. H. Mechanical metamaterials and beyond. Nat. Commun. 2023 141 14, 1-17 (2023).